留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速航行体齐射出水过程的空化与运动特性研究

周东辉 贾会霞 施红辉 王焯锴

周东辉, 贾会霞, 施红辉, 等. 高速航行体齐射出水过程的空化与运动特性研究[J]. 空气动力学学报, 2023, 41(2): 64−74 doi: 10.7638/kqdlxxb-2022.0122
引用本文: 周东辉, 贾会霞, 施红辉, 等. 高速航行体齐射出水过程的空化与运动特性研究[J]. 空气动力学学报, 2023, 41(2): 64−74 doi: 10.7638/kqdlxxb-2022.0122
ZHOU D H, JIA H X, SHI H H, et al. Research on cavitation and motion characteristics of high-speed vehicles exiting water in underwater salvo[J]. Acta Aerodynamica Sinica, 2023, 41(2): 64−74 doi: 10.7638/kqdlxxb-2022.0122
Citation: ZHOU D H, JIA H X, SHI H H, et al. Research on cavitation and motion characteristics of high-speed vehicles exiting water in underwater salvo[J]. Acta Aerodynamica Sinica, 2023, 41(2): 64−74 doi: 10.7638/kqdlxxb-2022.0122

高速航行体齐射出水过程的空化与运动特性研究

doi: 10.7638/kqdlxxb-2022.0122
基金项目: 浙江省自然科学基金(LY16A020003)
详细信息
    作者简介:

    周东辉,讲师,博士,研究方向:水动力学. E-mail:dhui_zhou@163.com

    通讯作者:

    贾会霞*,讲师,博士,研究方向:气泡动力学. E-mail:huixia.jia@zstu.edu.cn

  • 中图分类号: O352;TJ630

Research on cavitation and motion characteristics of high-speed vehicles exiting water in underwater salvo

  • 摘要: 基于求解N-S方程的VOF方法,引入Schnerr-Sauer空化模型、SST k-ω湍流模型和6DOF刚体运动模型,通过重叠网格技术建立两发射弹齐射出水的数值计算模型,并进行了数值方法的有效性验证。研究了不同发射无量纲时差下射弹齐射出水过程的超空泡演化特性、射弹的弹道轨迹、偏转角变化和减阻性能,分析了超空泡流场的干扰机理。研究结果表明:同步发射出水时,射弹超空泡内侧扩张受到抑制,在出水阶段超空泡发生了非对称性溃灭;两射弹的弹道稳定性较差,其偏转角的最大值达到了3.1°;对于异步发射出水,首发射弹超空泡前沿轮廓基本对称,而次发射弹超空泡前沿轮廓内侧壁面发生膨胀,失去了对称性,随着发射时差的增大,次发射弹超空泡内侧前沿轮廓曲率变小。首发射弹在出水过程中能维持良好的弹道稳定性,次发射弹在压差作用下向内侧偏转,运动轨迹也向内侧偏移,运动过程中次发射弹的最大无量纲水平位移和最大偏转角随发射时差的增大而减小。相比异步发射出水,同步发射条件下射弹的无量纲竖直速度衰减略快。
  • 图  1  射弹的几何模型

    Figure  1.  Geometric model of projectile

    图  2  计算域及边界条件设置

    Figure  2.  Computational domain and boundary condition setting

    图  3  网格划分示意图

    Figure  3.  Schematic of computational domain grids

    图  4  不同网格数量下无量纲竖直速度衰减曲线

    Figure  4.  Dimensionless vertical velocity attenuations of different grid numbers

    图  5  超空泡射弹出水过程的实验[10]和数值模拟结果对比

    Figure  5.  Comparison of the water-exit process between experimental and numerical simulation results

    图  6  无量纲竖直位移变化的实验和数值模拟结果对比

    Figure  6.  Comparison of dimensionless vertical displacement between experimental and numerical simulation results

    图  7  不同发射无量纲时差下射弹齐射出水的水相图

    Figure  7.  Supercavity evolutions of two projectiles exiting water in underwater salvo for different launch dimensionless time intervals

    图  8  $\Delta \bar t$ = 25时,超空泡演化示意图

    Figure  8.  Diagram of supercavity evolutions for $\Delta \bar t$ = 25

    图  9  $\Delta \bar t$ = 75,次发射弹典型时刻的无量纲压力云图

    Figure  9.  Dimensionless pressure distributions at typical time of the second projectile for $\Delta \bar t$ = 75

    图  10  特征位置处的射弹超空泡前沿轮廓对比

    Figure  10.  Comparison of the front part of supercavity profiles at the feature position

    图  11  $\Delta \bar t$ = 0,出水阶段特征位置的射弹表面无量纲压力分布及超空泡轮廓图

    Figure  11.  Dimensionless pressure distributions on the projectile surface and supercavity profiles at the feature position of water exit stage for $\Delta \bar t$ = 0

    图  12  出水过程射弹的运动轨迹

    Figure  12.  Trajectories during the projectiles exiting water

    图  13  不同发射无量纲时差下射弹偏转角随无量纲竖直位移的变化

    Figure  13.  Variations of deflection angles of projectiles with dimensionless vertical displacement for different launch dimensionless time intervals

    图  14  出水过程射弹无量纲竖直速度衰减曲线

    Figure  14.  Attenuation curves of dimensionless vertical velocity during the projectiles exiting water in vertical direction

    图  15  出水过程中射弹的阻力系数变化

    Figure  15.  Variations of drag coefficients during the projectiles exiting water

  • [1] 三土, 明光. 让枪弹飞行于水陆间: 挪威DSG公司多环境弹药系统[J]. 轻兵器, 2012(20): 35-39.

    SAN T, MING G. Flying bullets between land and water: Norwegian DSG multi environment ammunition system [J]. Small Arms, 2012(20): 35-39. (in Chinese)
    [2] 贾会霞, 施红辉, 胡俊辉, 等. 潜射超空泡射弹出水的流体力学现象的实验研究[J]. 船舶力学, 2017, 21(7): 814-820.

    JIA H X, SHI H H, HU J H, et al. Experiments on water exit phenomenon of underwater launched projectiles with a supercavity[J]. Journal of Ship Mechanics, 2017, 21(7): 814-820. (in Chinese)
    [3] WAUGH J G, STUBSTAD G W. WAater-exit behavior of missiles. part 1. preliminary studies[R]. Defense Technical Information Center, 1961. doi: 10.21236/ad0273717
    [4] NGUYEN V T, HA C T, PARK W G. Multiphase flow simulation of water-entry and -exit of axisymmetric bodies[C]// ASME 2013 International Mechanical Engineering Congress and Exposition, San Diego, California, USA. 2014 doi: 10.1115/IMECE2013-64691
    [5] LOGVINOVICH G V. Some problems of supercavitating flows [C]// Proceedings of NATO-AGARD, Ukraine: NAS-IHM, 1997: 36-44.
    [6] SAVCHENKO Y N, VLASENKO Y D, SEMENENKO V N. Experimental studies of high-speed cavitated flows[J]. International Journal of Fluid Mechanics Research, 1999, 26(3): 365-374. DOI: 10.1615/interjfluidmechres.v26.i3.80
    [7] CHU X S, YAN K, WANG Z, et al. Numerical simulation of water-exit of a cylinder with cavities[J]. Journal of Hydrodynamics, Ser B, 2010, 22(5): 877-881. DOI: 10.1016/S1001-6058(10)60045-5
    [8] 陈玮琪, 王宝寿, 颜开, 等. 空化器出水非定常垂直空泡的研究[J]. 力学学报, 2013, 45(1): 76-82. doi: 10.6052/0459-1879-12-164

    CHEN W Q, WANG B S, YAN K, et al. Study on the unsteady vertical cavity of the exit-water cavitor[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(1): 76-82. (in Chinese) doi: 10.6052/0459-1879-12-164
    [9] 魏海鹏, 郭凤美, 权晓波. 潜射导弹表面空化特性研究[J]. 宇航学报, 2007, 28(6): 1506-1509, 1523. doi: 10.3321/j.issn:1000-1328.2007.06.013

    WEI H P, GUO F M, QUAN X B. Research on cavitation of submarine launched missile's surface[J]. Journal of Astronautics, 2007, 28(6): 1506-1509, 1523. (in Chinese) doi: 10.3321/j.issn:1000-1328.2007.06.013
    [10] SHI H H, ZHOU D H, LU L W, et al. On the water exit of supercavitating projectiles with different head shapes[J]. Shock Waves, 2021, 31(6): 597-607. DOI: 10.1007/s00193-021-01025-7
    [11] 施红辉, 胡俊辉, 周浩磊. 完全超空泡出水的实验研究及理论分析[J]. 空气动力学学报, 2014, 32(4): 544-550. doi: 10.7638/kqdlxxb-2013.0008

    SHI H H, HU J H, ZHOU H L. Experimental and theoretical analysis of water exit of a supercavity[J]. Acta Aerodynamica Sinica, 2014, 32(4): 544-550. (in Chinese) doi: 10.7638/kqdlxxb-2013.0008
    [12] 贾会霞, 胡俊辉, 施红辉, 等. 出水超空泡的形状与弗劳德数影响的实验研究[J]. 西安交通大学学报, 2015, 49(3): 67-73. doi: 10.7652/xjtuxb201503012

    JIA H X, HU J H, SHI H H, et al. Experimental research on the shape of water-exit supercavity and the effect of Froude number[J]. Journal of Xi'an Jiaotong University, 2015, 49(3): 67-73. (in Chinese) doi: 10.7652/xjtuxb201503012
    [13] WANG Y W, LIAO L J, DU T Z, et al. A study on the collapse of cavitation bubbles surrounding the underwater-launched projectile and its fluid-structure coupling effects[J]. Ocean Engineering, 2014, 84: 228-236. DOI: 10.1016/j.oceaneng.2014.04.014
    [14] 王一伟, 黄晨光, 杜特专, 等. 航行体垂直出水载荷与空泡溃灭机理分析[J]. 力学学报, 2012, 44(1): 39-48. doi: 10.6052/0459-1879-2012-1-lxxb2011-139

    WANG Y W, HUANG C G, DU T Z, et al. Mechanism analysis about cavitation collapse load of underwater vehicles in a vertical launching process[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(1): 39-48. (in Chinese) doi: 10.6052/0459-1879-2012-1-lxxb2011-139
    [15] FU G Q, ZHAO J L, SUN L P, et al. Experimental investigation of the characteristics of an artificial cavity during the water-exit of a slender body[J]. Journal of Marine Science and Application, 2018, 17(4): 578-584. DOI: 10.1007/s11804-018-00055-5
    [16] CHEN Y, LI J, GONG Z X, et al. LES investigation on cavitating flow structures and loads of water-exiting submerged vehicles using a uniform filter of octree-based grids[J]. Ocean Engineering, 2021, 225: 108811. DOI: 10.1016/j.oceaneng.2021.108811
    [17] CHEN S R, SHI Y, PAN G, et al. Experimental research on cavitation evolution and movement characteristics of the projectile during vertical launching[J]. Journal of Marine Science and Engineering, 2021, 9(12): 1359. DOI: 10.3390/jmse9121359
    [18] MNASRI C, HAFSIA Z, OMRI M, et al. A moving grid model for simulation of free surface behavior induced by horizontal cylinders exit and entry[J]. Engineering Applications of Computational Fluid Mechanics, 2010, 4(2): 260-275. DOI: 10.1080/19942060.2010.11015315
    [19] 卢佳兴, 王聪, 魏英杰, 等. 回转体齐射出水过程空泡演化规律与弹道特性实验研究[J]. 兵工学报, 2019, 40(6): 1226-1234. doi: 10.3969/j.issn.1000-1093.2019.06.013

    LU J X, WANG C, WEI Y J, et al. Experimental research on cavity evolution pattern and trajectory characteristics in the water-exit process of salvoed revolving bodies[J]. Acta Armamentarii, 2019, 40(6): 1226-1234. (in Chinese) doi: 10.3969/j.issn.1000-1093.2019.06.013
    [20] 施红辉, 周东辉, 周栋, 等. 两连发射弹出入水的轴对称超空泡流动特性[J]. 空气动力学学报, 2020, 38(6): 1064-1074. doi: 10.7638/kqdlxxb-2019.0102

    SHI H H, ZHOU D H, ZHOU D, et al. Flow characteristics of axisymmetric supercavitation induced by two successively fired projectiles in water entry and exit[J]. Acta Aerodynamica Sinica, 2020, 38(6): 1064-1074. (in Chinese) doi: 10.7638/kqdlxxb-2019.0102
    [21] 毕凤阳, 卢丙举, 赵世平, 等. 水下齐射扰动特性[J]. 航空动力学报, 2020, 35(7): 1345-1352. doi: 10.13224/j.cnki.jasp.2020.07.001

    BI F Y, LU B J, ZHAO S P, et al. Disturbance characteristic of underwater salvo[J]. Journal of Aerospace Power, 2020, 35(7): 1345-1352. (in Chinese) doi: 10.13224/j.cnki.jasp.2020.07.001
    [22] XU H, WEI Y J, WANG C, et al. On wake vortex encounter of axial-symmetric projectiles launched successively underwater[J]. Ocean Engineering, 2019, 189: 106382-1352. doi: 10.1016/j.oceaneng.2019.106382
    [23] GAO S, SHI Y, PAN G, et al. A study on the flow interference characteristics of projectiles successively launched underwater[J]. International Journal of Multiphase Flow, 2022, 151: 104066. DOI: 10.1016/j.ijmultiphaseflow.2022.104066
    [24] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. DOI: 10.2514/3.12149
    [25] GAO J G, CHEN Z H, HUANG Z G, et al. Numerical investigations on the oblique water entry of high-speed projectiles[J]. Applied Mathematics and Computation, 2019, 362: 124547. DOI: 10.1016/j.amc.2019.06.061
  • 加载中
图(15)
计量
  • 文章访问数:  29
  • HTML全文浏览量:  21
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-26
  • 录用日期:  2022-09-19
  • 修回日期:  2022-09-12
  • 网络出版日期:  2022-10-18
  • 刊出日期:  2023-03-01

目录

    /

    返回文章
    返回