留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑风切变影响的三维尾流模型风场实验

张绍海 高晓霞 朱霄珣 王瑜 王喜

张绍海, 高晓霞, 朱霄珣, 等. 考虑风切变影响的三维尾流模型风场实验[J]. 空气动力学学报, 2023, 41(X): 1−9 doi: 10.7638/kqdlxxb-2022.0134
引用本文: 张绍海, 高晓霞, 朱霄珣, 等. 考虑风切变影响的三维尾流模型风场实验[J]. 空气动力学学报, 2023, 41(X): 1−9 doi: 10.7638/kqdlxxb-2022.0134
ZHANG S H, GAO X X, ZHU X X, et al. Experimental study on wind field of three-dimensional wake model considering the influence of wind shear[J]. Acta Aerodynamica Sinica, 2023, 41(X): 1−9 doi: 10.7638/kqdlxxb-2022.0134
Citation: ZHANG S H, GAO X X, ZHU X X, et al. Experimental study on wind field of three-dimensional wake model considering the influence of wind shear[J]. Acta Aerodynamica Sinica, 2023, 41(X): 1−9 doi: 10.7638/kqdlxxb-2022.0134

考虑风切变影响的三维尾流模型风场实验

doi: 10.7638/kqdlxxb-2022.0134
基金项目: 国家自然科学基金(52076081);中央高校基本科研基金资助项目(2020MS107)
详细信息
    作者简介:

    张绍海(1996-),男,四川资阳人,硕士研究生,研究方向:风力机尾流分析. E-mail:zhangshaohaihai@outlook.com

    通讯作者:

    高晓霞*,副教授,博导,研究方向:风力机尾流、机组能效及载荷特性分析. E-mail:okspringgao@hotmail.com

  • 中图分类号: TK81

Experimental study on wind field of three-dimensional wake model considering the influence of wind shear

  • 摘要: 针对目前风力机尾流模型只能描述远尾流区域的尾流分布而忽略了近尾流区域的尾流特征的问题,该文基于双高斯函数,利用流量守恒定理并通过旋转修正推导了一个新的三维尾流模型。该尾流模型考虑了风切变的影响,并且能够描述近尾流区域以及远尾流区域的三维尾流分布特征。采用两台地基扫描激光雷达进行了风场实验,实验数据表明水平方向的近尾流分布类似于对称双高斯形,远尾流区域类似于对称高斯形,而垂直方向由于受到风切变的影响,在近尾流区域尾流分布类似非对称双高斯形,远尾流区域分布类似非对称高斯形。利用实测数据对三维尾流模型预测的水平剖面以及垂直剖面进行了对比验证,验证结果表明三维尾流模型的预测曲线和实验数据吻合良好,其平均相对误差大部分都在5%以内。新提出的三维尾流模型能够较好地预测风力机下游的整个尾流区域的空间分布,可为风电场的布局提供优化方案。
  • 图  1  旋转修正示意图

    Figure  1.  Schematic of rotation correction

    图  2  UP77型号风力机的功率曲线和推力系数曲线

    Figure  2.  Power curve and thrust coefficient curve of UP77 wind turbine

    图  3  风场实验的仪器布置

    Figure  3.  Instrument arrangement of wind field experiment

    图  4  W3D6000测量的水平剖面云图

    Figure  4.  Cloud diagram of horizontal profile measured by W3D6000

    图  5  WP350测量的3月风玫瑰图

    Figure  5.  Wind rose in March measured by WP350

    图  6  三维尾流模型预测的下游6个位置水平剖面与实测数据的对比

    Figure  6.  Comparison between horizontal profiles at 6 downstream locations predicted by the three-dimensional wake model and measured data

    图  7  水平剖面的相对误差分析

    Figure  7.  Relative errors analysis of horizontal profiles

    图  8  W3D6000测量的垂直剖面云图

    Figure  8.  Cloud diagram of vertical profile measured by W3D6000

    图  9  WP350测量的1月风玫瑰图

    Figure  9.  Wind rose in January measured by WP350

    图  10  WP350测量的来流风廓线

    Figure  10.  Incoming wind profile measured by WP350

    图  11  三维尾流模型和未修正尾流模型的预测曲线和实验数据的比较结果

    Figure  11.  Comparison of prediction curves and experimental data of three-dimensional wake model and uncorrected wake model

    图  12  垂直剖面的相对误差分析

    Figure  12.  Relative errors analysis of vertical profiles

    表  1  UP77风力机的参数规格

    Table  1.   Parameters and specifications of UP77 wind turbine

    CategoriesSpecifications
    ManufacturerUnited Power
    ModelUP77
    Rated power/ kW1500
    Rated wind speed/( m·s–1)11.1
    Diameter/m77
    Hub height/m65
    下载: 导出CSV

    表  2  W3D6000的PPI模式和RHI模式设置参数

    Table  2.   PPI mode and RHI mode setting parameters of W3D6000

    Scanning
    mode
    Azimuth variation
    range/ (°)
    Elevation variation
    range/ (°)
    Scanning
    time /min
    PPI315~454,5,6,7,8,10,12,14,18,22,26,30,34,36,4425
    RHI330~3400~4510
    下载: 导出CSV
  • [1] 吴正人, 靳超然, 李非, 等. 风力机对大气边界层近地层影响的数值模拟[J]. 空气动力学学报, 2016, 34(6): 813-818.

    WU Z R, JIN C R, LI F, et al. Numerical simulation for influences of a wind turbine on surface-level of atmospheric boundary layer[J]. Acta Aerodynamica Sinica, 2016, 34(6): 813-818. (in Chinese)
    [2] 赵飞, 李兵兵, 蔚步超, 等. 考虑风切变的风电场尾流模型实验研究[J]. 中国测试, 2020, 46(1): 154-159. doi: 10.11857/j.issn.1674-5124.2019070025

    ZHAO F, LI B B, YU B C, et al. Experimental study on wake model of wind farm considering wind shear[J]. China Measurement & Test, 2020, 46(1): 154-159. (in Chinese) doi: 10.11857/j.issn.1674-5124.2019070025
    [3] 田琳琳, 赵宁, 钟伟, 等. 风力机远尾流的计算研究[J]. 空气动力学学报, 2011, 29(6): 805-809, 814. doi: 10.3969/j.issn.0258-1825.2011.06.020

    TIAN L L, ZHAO N, ZHONG W, et al. Numerical analysis of the wind turbine’s far wake[J]. Acta Aerodynamica Sinica, 2011, 29(6): 805-809, 814. (in Chinese) doi: 10.3969/j.issn.0258-1825.2011.06.020
    [4] SUN H Y, YANG H X. Study on an innovative three-dimensional wind turbine wake model[J]. Applied Energy, 2018, 226: 483-493. DOI: 10.1016/j.apenergy.2018.06.027
    [5] LI L, HUANG Z, GE M W, et al. A novel three-dimensional analytical model of the added streamwise turbulence intensity for wind-turbine wakes[J]. Energy, 2022, 238: 121806. DOI: 10.1016/j.energy.2021.121806
    [6] 吴正人, 张智博, 刘梅, 等. 基于OpenFOAM的层结性对风力机尾流大气参数的影响[J]. 可再生能源, 2022, 40(7): 926-931. doi: 10.3969/j.issn.1671-5292.2022.07.011

    WU Z R, ZHANG Z B, LIU M, et al. Influence of stratification properties on atmospheric parameters of wind turbine wake based on OpenFOAM[J]. Renewable Energy Resources, 2022, 40(7): 926-931. (in Chinese) doi: 10.3969/j.issn.1671-5292.2022.07.011
    [7] 薛飞飞, 许昌, 黄海琴, 等. 基于格子玻尔兹曼方法的风力机尾流特性研究[J]. 中国电机工程学报, 2022, 42(12): 4352-4363.

    XUE F F, XU C, HUANG H Q, et al. Study on wake characteristics of wind turbine based on lattice boltzmann method[J]. Proceedings of the CSEE, 2022, 42(12): 4352-4363. (in Chinese)
    [8] 曹九发, 宋佺珉, 王超群, 等. 阵风工况下多台风力机尾流效应的非定常特性[J]. 空气动力学学报, 2022, 40(4): 247-255. doi: 10.7638/kqdlxxb-2021.0309

    CAO J F, SONG Q M, WANG C Q, et al. Unsteady characteristics of wake effect for multiple wind turbines under gust wind condition[J]. Acta Aerodynamica Sinica, 2022, 40(4): 247-255. (in Chinese) doi: 10.7638/kqdlxxb-2021.0309
    [9] JENSEN N. A note on wind generator interaction[R]. Technical report from the Risø National (Laboratory Risø-M-2411), 1983.
    [10] BASTANKHAH M, PORTÉ-AGEL F. A new analytical model for wind-turbine wakes[J]. Renewable Energy, 2014, 70: 116-123. DOI: 10.1016/j.renene.2014.01.002
    [11] FRANDSEN S, BARTHELMIE R, PRYOR S, et al. Analytical modelling of wind speed deficit in large offshore wind farms[J]. Wind Energy, 2006, 9(1-2): 39-53. DOI: 10.1002/we.189
    [12] TIAN L L, ZHU W J, SHEN W Z, et al. Development and validation of a new two-dimensional wake model for wind turbine wakes[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 137: 90-99. DOI: 10.1016/j.jweia.2014.12.001
    [13] GAO X X, LI B B, WANG T Y, et al. Investigation and validation of 3D wake model for horizontal-axis wind turbines based on filed measurements[J]. Applied Energy, 2020, 260: 114272. DOI: 10.1016/j.apenergy.2019.114272
    [14] BLONDEL F, CATHELAIN M. An alternative form of the super-Gaussian wind turbine wake model[J]. Wind Energy Science, 2020, 5(3): 1225-1236. DOI: 10.5194/wes-5-1225-2020
    [15] VERMEER L J, SØRENSEN J N, CRESPO A. Wind turbine wake aerodynamics[J]. Progress in Aerospace Sciences, 2003, 39(6-7): 467-510. DOI: 10.1016/S0376-0421(03)00078-2
    [16] KEANE A, AGUIRRE P E O, FERCHLAND H, et al. An analytical model for a full wind turbine wake[J]. Journal of Physics: Conference Series, 2016, 753: 032039. DOI: 10.1088/1742-6596/753/3/032039
    [17] KEANE A. Advancement of an analytical double-Gaussian full wind turbine wake model[J]. Renewable Energy, 2021, 171: 687-708. DOI: 10.1016/j.renene.2021.02.078
    [18] SCHREIBER J, BALBAA A, BOTTASSO C L. A double-Gaussian wake model [J]. Wind Energy, 2020, 5: 237-44.
    [19] IUNGO G V. Experimental characterization of wind turbine wakes: wind tunnel tests and wind LiDAR measurements[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 149: 35-39. DOI: 10.1016/j.jweia.2015.11.009
    [20] IUNGO G V, WU Y T, PORTÉ-AGEL F. Field measurements of wind turbine wakes with lidars[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(2): 274-287. DOI: 10.1175/jtech-d-12-00051.1
    [21] MCTAVISH S, FESZTY D, NITZSCHE F. An experimental and computational assessment of blockage effects on wind turbine wake development[J]. Wind Energy, 2014, 17(10): 1515-1529. DOI: 10.1002/we.1648
    [22] BODINI N, ZARDI D, LUNDQUIST J K. Three-dimensional structure of wind turbine wakes as measured by scanning lidar[J]. Atmospheric Measurement Techniques, 2017, 10(8): 2881-2896. DOI: 10.5194/amt-10-2881-2017
    [23] KATIĆ I, JENSEN N O. A simple model for cluster efficiency[R] Proc. EWEC, 1, 1986. https://www.researchgate.net/publication/245066130_Article_A_simple_model_for_cluster_efficiency
    [24] GAO X X, ZHANG S H, LI L Q, et al. Quantification of 3D spatiotemporal inhomogeneity for wake characteristics with validations from field measurement and wind tunnel test[J]. Energy, 2022, 254: 124277. DOI: 10.1016/j.energy.2022.124277
    [25] HE R Y, YANG H X, SUN H Y, et al. A novel three-dimensional wake model based on anisotropic Gaussian distribution for wind turbine wakes[J]. Applied Energy, 2021, 296: 117059. DOI: 10.1016/j.apenergy.2021.117059
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  6
  • HTML全文浏览量:  14
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-03
  • 录用日期:  2022-12-04
  • 修回日期:  2022-11-22
  • 网络出版日期:  2023-03-13

目录

    /

    返回文章
    返回