留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

斜风来流下纵摇运动对机-舰耦合流场的影响

李通 刘戈 宗昆 赵宁 王逸斌

李通, 刘戈, 宗昆, 等. 斜风来流下纵摇运动对机-舰耦合流场的影响[J]. 空气动力学学报, 2023, 41(3): 77−88 doi: 10.7638/kqdlxxb-2022.0174
引用本文: 李通, 刘戈, 宗昆, 等. 斜风来流下纵摇运动对机-舰耦合流场的影响[J]. 空气动力学学报, 2023, 41(3): 77−88 doi: 10.7638/kqdlxxb-2022.0174
LI T, LIU G, ZONG K, et al. Influence of pitching on ship-helicopter coupled flowfield subject to oblique winds[J]. Acta Aerodynamica Sinica, 2023, 41(3): 77−88 doi: 10.7638/kqdlxxb-2022.0174
Citation: LI T, LIU G, ZONG K, et al. Influence of pitching on ship-helicopter coupled flowfield subject to oblique winds[J]. Acta Aerodynamica Sinica, 2023, 41(3): 77−88 doi: 10.7638/kqdlxxb-2022.0174

斜风来流下纵摇运动对机-舰耦合流场的影响

doi: 10.7638/kqdlxxb-2022.0174
详细信息
    作者简介:

    李通(1995-),男,陕西人,工程师,研究方向:舰面流场数值计算. E-mail:lee_tong@foxmail.com

    通讯作者:

    宗昆*(1987-),男,高级工程师,研究方向:航空保障技术. E-mail:839159704@qq.com

  • 中图分类号: V211.3

Influence of pitching on ship-helicopter coupled flowfield subject to oblique winds

  • 摘要: 机-舰耦合流场是一个复杂紊乱的非定常流场,舰船的六自由度摇摆运动会进一步恶化飞行甲板上方的流场环境。为了探究舰船的摇摆运动对飞行甲板上方机-舰耦合流场的影响,基于简化护卫舰SFS2和旋翼的耦合模型,对两种斜风状态下、纵摇运动中的机-舰耦合流场进行了数值模拟,分析了纵摇运动对机-舰耦合流场结构和旋翼拉力的影响,对比了两种斜风状态下的流场差异。研究结果表明:随着舰船的纵摇运动,机库后方形成的不稳定混合涡结构和垂向气流会对旋翼气动力造成明显的影响,旋翼拉力出现了近似周期性的变化,与纵摇运动的周期一致,但各观测点处的速度分量均未出现周期性的变化;旋翼拉力在甲板上浮至水平位置附近时最大,在甲板下沉至水平位置附近时最小,对于左舷和右舷来流,拉力分别降低了约13%和6%,因此飞行员要认识到纵摇运动带来的拉力损失,确保直升机具有足够的操纵量,以便能及时调整总距来保证直升机在该状况下的起降安全性。
  • 图  1  SFS及SFS2模型示意图

    Figure  1.  Schematic of SFS and SFS2

    图  2  交界面示意图

    Figure  2.  Schematic of interface

    图  3  计算结果验证

    Figure  3.  Comparisons of calculated and experimental results

    图  4  机舰耦合模型示意图

    Figure  4.  Schematic of rotor-ship coupled model

    图  5  流场域示意图

    Figure  5.  Schematic of flow field

    图  6  网格示意图

    Figure  6.  Schematic of grid

    图  7  不同网格下的旋翼拉力变化

    Figure  7.  Variation of rotor thrust for different grids

    图  8  R30°的涡结构分布图

    Figure  8.  Distribution of vortex structure in R30°

    图  9  R30°的涡量云图

    Figure  9.  Distribution of vorticity in R30°

    图  10  R30°的垂向速度云图

    Figure  10.  Distribution of vertical velocity in R30°

    图  11  R30°状态下的旋翼拉力变化

    Figure  11.  Variations of rotor thrust in R30° state

    图  12  R30°状态下观测点的速度分量变化

    Figure  12.  Variations of velocity components in R30° state

    图  13  G30°的涡结构分布图

    Figure  13.  Distribution of vortical structures in G30°

    图  14  G30°的涡量云图

    Figure  14.  Distribution of vorticity in G30°

    图  15  G30°的垂向速度云图

    Figure  15.  Distribution of vertical velocity in G30°

    图  16  G30°状态下的旋翼拉力变化

    Figure  16.  Variations of rotor thrust in G30° state

    图  17  G30°状态下观测点的速度分量变化

    Figure  17.  Variations of velocity components in G30° state

    图  18  两种状态下的旋翼拉力对比

    Figure  18.  Comparisons of rotor thrust between two states

    图  19  两种状态下的速度分量对比

    Figure  19.  Comparisons of velocity components between two states

  • [1] 赵鹏程, 李海旭, 宗昆, 等. 直升机舰上起降安全的影响因素研究[J]. 船舶工程, 2017, 39(9): 88-92.

    ZHAO P C, LI H X, ZONG K, et al. Study of influence factors on taking-off/landing safety of shipborad helicopter[J]. Ship Engineering, 2017, 39(9): 88-92. (in Chinese)
    [2] 顾蕴松, 明晓. 舰船飞行甲板真实流场特性试验研究[J]. 航空学报, 2001, 22(6): 500-504.

    GU Y S, MING X. Experimental investigation on flow field properties around aft-deck of destroyer[J]. Acta Aeronautica et Astronautica Sinica, 2001, 22(6): 500-504.(in Chinese)
    [3] 赵维义. PIV测量舰船空气尾流场[J]. 实验流体力学, 2007, 21(1): 31-35. doi: 10.3969/j.issn.1672-9897.2007.01.006

    ZHAO W Y. PIV measurements of the warship air-wake[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(1): 31-35. (in Chinese) doi: 10.3969/j.issn.1672-9897.2007.01.006
    [4] 汪成豪, 江鹏远, 龚晨, 等. 机库构型对舰船艉流场的影响[J]. 船舶工程, 2021, 43(S2): 89-95. doi: 10.13788/j.cnki.cbgc.2021.S2.20

    WANG C H, JIANG P Y, GONG C, et al. Influence of hangar configuration on ship stern flow field[J]. Ship Engineering, 2021, 43(S2): 89-95. (in Chinese) doi: 10.13788/j.cnki.cbgc.2021.S2.20
    [5] 宗昆, 宗伟, 李海旭, 等. 舰载直升机起降区空气流场模拟方法研究[J]. 舰船科学技术, 2018, 40(3): 124-130, 139. doi: 10.3404/j.issn.1672-7649.2018.02.024

    ZONG K, ZONG W, LI H X, et al. Research of simulation methods on landing flow field for shipborne helicopters[J]. Ship Science and Technology, 2018, 40(3): 124-130, 139. (in Chinese) doi: 10.3404/j.issn.1672-7649.2018.02.024
    [6] WATSON N A, KELLY M F, OWEN I, et al. Computational and experimental modelling study of the unsteady airflow over the aircraft carrier HMS Queen Elizabeth[J]. Ocean Engineering, 2019, 172: 562-574. DOI: 10.1016/j.oceaneng.2018.12.024
    [7] SHUKLA S, SINGH S N, SINHA S S, et al. Comparative assessment of URANS, SAS and DES turbulence modeling in the predictions of massively separated ship airwake characteristics[J]. Ocean Engineering, 2021, 229: 108954. DOI: 10.1016/j.oceaneng.2021.108954
    [8] FORREST J S, OWEN I. An investigation of ship airwakes using Detached-Eddy Simulation[J]. Computers & Fluids, 2010, 39(4): 656-673. DOI: 10.1016/j.compfluid.2009.11.002
    [9] WILKINSON C H, ZAN S J, GILBERT N E, et al. Modelling and simulation of ship air wakes for helicopter operations – a collaborative venture[C]//Fluid Dynamics Problems of Vehicles Operating Near or in the Air-Sea Interface, 1998, Amsterdam, Netherlands.ISBN 92-837-0004-X.
    [10] YUAN W X, WALL A, LEE R. Combined numerical and experimental simulations of unsteady ship airwakes[J]. Computers & Fluids, 2018, 172: 29-53. DOI: 10.1016/j.compfluid.2018.06.006
    [11] TAYMOURTASH N, ZAGAGLIA D, ZANOTTI A, et al. Experimental study of a helicopter model in shipboard operations[J]. Aerospace Science and Technology, 2021, 115: 106774. DOI: 10.1016/j.ast.2021.106774
    [12] 苏萁, 王逸斌, 赵宁. 直升机与舰船耦合流场的旋涡与分离特性[J]. 空气动力学学报, 2020, 38(5): 971-979. doi: 10.7638/kqdlxxb-2020.0002

    SU Q, WANG Y B, ZHAO N. Vortex and separation of coupled flow field between helicopter and ship[J]. Acta Aerodynamica Sinica, 2020, 38(5): 971-979. (in Chinese) doi: 10.7638/kqdlxxb-2020.0002
    [13] LI T, WANG Y B, ZHAO N. Numerical study of the flow over the modified simple frigate shape[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2021, 235(12): 1551-1565. DOI: 10.1177/0954410020977752
    [14] 赵永振. 大型舰船定常与非定常气流场数值模拟[D]. 哈尔滨: 哈尔滨工程大学, 2012.

    ZHAO Y Z. Numerical simulation of steady and unsteady air flow field around large ship[D]. Harbin: Harbin Engineering University, 2012(in Chinese).
    [15] 李通, 王逸斌, 赵宁. 舰船纵摇突变对舰面流场的影响[J]. 空气动力学学报, 2021, 39(3): 80-89. doi: 10.7638/kqdlxxb-2019.0136

    LI T, WANG Y B, ZHAO N. Influence of sudden change in pitching motion on ship flow field[J]. Acta Aerodynamica Sinica, 2021, 39(3): 80-89. (in Chinese) doi: 10.7638/kqdlxxb-2019.0136
    [16] LI T, WANG Y B, ZHAO N. Influence of ship motion on flow field over modified simple frigate shapes[J]. Proceedings of the Institution of Mechanical Engineers Part G Journal of Aerospace Engineering, 2020, 235(12): 095441002097775.
    [17] CARADONNA F, TUNG C. Experimental and analytical studies of a model helicopter rotor in hover[R]. NASA-TM-81232, 1980. https://ntrs.nasa.gov/api/citations/19820004169/downloads/19820004169.pdf
    [18] 章晓冬, 侯志强, 胡国才, 等. 某型舰载直升机着舰风限图的计算[J]. 四川兵工学报, 2012, 33(10): 30-33.

    ZHANG X D, HOU Z Q, HU G C, et al. Calculation of wind limit diagram of a ship-borne helicopter landing[J]. Journal of Sichuan Ordnance, 2012, 33(10): 30-33. (in Chinese)
  • 加载中
图(26)
计量
  • 文章访问数:  45
  • HTML全文浏览量:  20
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-21
  • 录用日期:  2022-12-04
  • 修回日期:  2022-11-28
  • 网络出版日期:  2023-01-31
  • 刊出日期:  2023-03-25

目录

    /

    返回文章
    返回