留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

缝道几何构型对翼型气动特性的影响

郝礼书 林梓佳 屈昊阳 王暕书 高永卫

郝礼书, 林梓佳, 屈昊阳, 等. 缝道几何构型对翼型气动特性的影响[J]. 空气动力学学报, 2023, 41(X): 1−10 doi: 10.7638/kqdlxxb-2022.0188
引用本文: 郝礼书, 林梓佳, 屈昊阳, 等. 缝道几何构型对翼型气动特性的影响[J]. 空气动力学学报, 2023, 41(X): 1−10 doi: 10.7638/kqdlxxb-2022.0188
HAO L S, LIN Z J, QU H Y, et al. Influence of slot geometry configuration on airfoil aerodynamic characteristics[J]. Acta Aerodynamica Sinica, 2023, 41(X): 1−10 doi: 10.7638/kqdlxxb-2022.0188
Citation: HAO L S, LIN Z J, QU H Y, et al. Influence of slot geometry configuration on airfoil aerodynamic characteristics[J]. Acta Aerodynamica Sinica, 2023, 41(X): 1−10 doi: 10.7638/kqdlxxb-2022.0188

缝道几何构型对翼型气动特性的影响

doi: 10.7638/kqdlxxb-2022.0188
基金项目: 科工局重点实验室稳定支持项目(D5050210009)
详细信息
    通讯作者:

    郝礼书(1980-),男,四川威远人,博士,副教授,研究方向:流动控制. E-mail:haolishu@nwpu.edu.cn

  • 中图分类号: V211.3

Influence of slot geometry configuration on airfoil aerodynamic characteristics

  • 摘要: 为了深入研究翼型开缝这种抑制翼型吸力面流动分离的被动流动控制技术,对NACA4421翼型开展了数值研究。在探讨了开缝依据的基础上,设计了7种缝道构型,并给出了缝道构型之间的几何联系,对比分析了曲线、折线及直线三种形式的缝道对翼型失速的控制效果,发现曲线缝道能够显著提高翼型的最大升力系数和失速迎角;分析了曲线缝道构型升力系数“双峰”现象的机理,提出了一种新型导流片缝道构型,该构型利用“科恩达效应”能够全面改善基准翼型的失速特性,失速迎角推迟可达14°,最大升力系数提高122%,达到2.785。本文所提出的导流片缝道,是一种新型的缝道构型,为增升装置设计提供了一种思路和参考。
  • 图  1  30P-30N多段翼型网格示意图和升力特性计算验证

    Figure  1.  Grid diagram and numerical validation of the lift coefficient for the 30P-30N airfoil

    图  2  翼型网格收敛性研究 ($ \alpha $ = 10º)

    Figure  2.  Grid convergence study for the airfoil at $ \alpha $ = 10º

    图  3  基准翼型的升力和阻力系数曲线

    Figure  3.  Lift and drag coefficient curve of baseline airfoil

    图  4  不同迎角下翼型表面的压力分布曲线

    Figure  4.  Pressure distributions on the airfoil under different angles of attack

    图  5  直线缝和偏折缝的对比

    Figure  5.  Comparison of the slot configurations with straight lines and polylines

    图  6  基于偏折缝的局部曲线修形处理过程中的缝道对比图

    Figure  6.  Comparison of the slot configurations with local curve modification

    图  7  导流片缝道构型的形成过程

    Figure  7.  Evolution of the deflector slot configuration

    图  8  直线构型缝道翼型的升力系数和阻力系数曲线

    Figure  8.  Comparison of the lift and drag coefficient curves for the airfoil with different straight-line slot configurations

    图  9  迎角19°时不同直线缝道构型的翼型流场对比

    Figure  9.  Comparison of flow fields for the airfoil with different straight-line slot configurations at $ \mathrm{\alpha } $ = 19°

    图  10  曲线构型缝道翼型的升力系数和阻力极曲线

    Figure  10.  Comparison of the lift and drag coefficient curves for the airfoil with different curve slot configurations

    图  11  曲线构型缝CS3前半段和后半段翼型的压力分布对比

    Figure  11.  Comparison of pressure distributions for the airfoil with curve slot CS3 under different angles of attack

    图  12  迎角18°时不同曲线缝道构型的翼型流场对比

    Figure  12.  Comparison of flow fields for the airfoil with different curve slot configurations at $ \mathrm{\alpha } $ = 18°

    图  13  CS3缝道构型不同迎角时的翼型流场对比

    Figure  13.  Comparison of flow fields for the airfoil with curve slot CS3 under different angles of attack

    图  14  不同缝道构型翼型的升力系数和阻力极曲线

    Figure  14.  Comparison of the lift and drag coefficient curves for the airfoil with different slot configurations

    图  15  不同缝道构型的翼型前半段和后半段表面压力分布对比($ \alpha $ = 22°)

    Figure  15.  Comparison of pressure distributions on the front and rear sections of the airfoil with different slot configurations at $ \mathrm{\alpha } $ = 22°

    图  16  迎角27°时不同缝道的翼型流场对比

    Figure  16.  Comparison of flow fields for the airfoil with different slot configurations at $ \alpha $ = 27°

    表  1  7种缝道构型几何变化关系

    Table  1.   Geometric relationship of 7 kinds of slot configurations

    序 号名 称几何特征关系
    1SS1直线缝道,与弦线夹角56°。
    2SS2在1基础上缝道中部折角处理,形成“偏折斜线缝道”。
    3CS1在2基础上对缝道中部进行曲线修形,形成曲线缝道1。
    4CS2在3基础上针对翼型下翼面的缝道口连接位置进行曲线修形,形成曲线缝道2。
    5CS3在4基础上仅针对翼型上表面的缝道口靠近后缘方向的连接位置进行曲线修形,形成曲线缝道3。
    6DS在5基础上针对翼型上表面的缝道口靠近后缘方向的连接位置进行导流片设计,形成新的“导流片缝道”构型。
    7CS4在6基础上去掉缝道口的导流片,形成曲线缝道4。
    下载: 导出CSV

    表  2  典型缝道构型对翼型失速特性改善对比

    Table  2.   Comparison among typical slot configurations for improving the stall characteristics of the airfoil

    缝道构型最大升力
    系数
    最大升力系数
    提高百分比/%
    失速迎角
    推迟度数/(°)
    直线缝道[18]1.51267
    折线缝道[21]1.6530
    弧形缝道[19]1.19583
    曲线缝道CS4[本文]1.92536
    导流片缝道DS[本文]2.78512214
    下载: 导出CSV
  • [1] 周岩, 罗振兵, 王林, 等. 等离子体合成射流激励器及其流动控制技术研究进展[J]. 航空学报, 2022, 43(3): 025027. doi: 10.7527/S1000-6893.2020.25027

    ZHOU Y, LUO Z B, WANG L, et al. Plasma synthetic jet actuator for flow control: review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 025027. (in Chinese) doi: 10.7527/S1000-6893.2020.25027
    [2] 李应红, 吴云, 梁华, 等. 等离子体激励气动力学探索与展望[J]. 力学进展, 2022, 52(1): 1-32. doi: 10.6052/1000-0992-21-044

    LI Y H, WU Y, LIANG H, et al. Exploration and outlook of plasma-actuated gas dynamics[J]. Advances in Mechanics, 2022, 52(1): 1-32. (in Chinese) doi: 10.6052/1000-0992-21-044
    [3] CHOI B, HONG Y, LEE B, et al. Adaptive flow separation control over an asymmetric airfoil[J]. International Journal of Aeronautical and Space Sciences, 2018, 19(2): 305-315. DOI: 10.1007/s42405-018-0029-z
    [4] 许和勇, 马成宇. 协同射流流动控制方法研究进展综述[J/OL]. 航空工程进展, 2022: 1-16. (2022-03-25).https://kns.cnki.net/kcms/detail/61.1479.V.20220324.0959.002.html.

    XU H Y, MA C Y. Review of the Co-flow jet flow control method[J/OL]. Advances in Aeronautical Science and Engineering, 2022: 1-16. (2022-03-25). https://kns.cnki.net/kcms/detail/61.1479.V.20220324.0959.002.html. doi: 10.16615/j.cnki.1674-8190.2022.06.01 (in Chinese).
    [5] 周晓亮, 翁海平, 龚玉祥, 等. 涡流发生器设计参数对某40%厚度翼型性能影响的实验研究[J]. 太阳能学报, 2022, 43(6): 212-218. doi: 10.19912/j.0254-0096.tynxb.2020-1011

    ZHOU X L, WENG H P, GONG Y X, et al. Experimental study on effect of vortex generator design parameters on 40% thick airfoil[J]. Acta Energiae Solaris Sinica, 2022, 43(6): 212-218. (in Chinese) doi: 10.19912/j.0254-0096.tynxb.2020-1011
    [6] HAO L S, GAO Y W, WEI B B. Experimental investigation of flow separation control over airfoil by upper surface flap with a gap[J]. International Journal of Aeronautical and Space Sciences, 2022, 23(5): 859-869. DOI: 10.1007/s42405-022-00488-x
    [7] 杨瑞, 杨胜兵, 孙霞阳, 等. 开缝对风力机翼型空气动力学特性的影响[J]. 应用力学学报, 2021, 38(1): 70-77. doi: 10.11776/cjam.38.01.A061

    YANG R, YANG S B, SUN X Y, et al. Effect of slits on aerodynamic characteristics of wind-driven airfoil[J]. Chinese Journal of Applied Mechanics, 2021, 38(1): 70-77. (in Chinese) doi: 10.11776/cjam.38.01.A061
    [8] WEICK F E, SHORTAL J A. The effect of multiple fixed slots and a trailing-edge flap on the lift and drag of a Clark Y airfoil[R]. NACA Report No. 427, , 1932
    [9] 刘中元, 褚胡冰, 陈迎春, 等. 前缘缝翼开缝改善增升装置失速特性研究[J/OL]. 空气动力学学报, 2022: 1-8. (2022-04-07).https://kns.cnki.net/kcms/detail/51.1192.TK.20220407.1028.002.html.

    LIU Z Y, CHU H B, CHEN Y C, et al. Stall characteristics of high-lift device improved by slotting on leading-edge slat[J/OL]. Acta Aerodynamica Sinica, 2022: 1-8. (2022-04-07). https://kns.cnki.net/kcms/detail/51.1192.TK.20220407.1028.002.html. doi: 10.7638/kqdlxxb-2021.0392 (in Chinese)
    [10] ZHU J Y , ZHU M K, ZHANG T, et al. Improvement of the power extraction performance of a semi-active flapping airfoil by employing two-sided symmetric slot airfoil[J]. Energy, 2021, 227: 120458. DOI: 10.1016/j.energy.2021.120458
    [11] YEO H, LIM J. Application of a slotted airfoil for UH-60A helicopter performance[C]//Proceedings of the American Helicopter Society Aerodynamics, Acoustics, and Test and Evaluation Technical Specialist Meeting. San Francisco, CA, 2002.
    [12] RAMZI M, ABDERRAHMANE G. Passive control via slotted blading in a compressor cascade at stall condition[J]. Journal of Applied Fluid Mechanics, 2013, 6(4): 571-580. DOI: 10.36884/jafm.6.04.20670
    [13] 卢章树, 陈潇, 张召明. 上缘开缝翼伞模型风洞试验方法探索研究[J]. 航空精密制造技术, 2020, 56(6): 26-29, 58. doi: 10.3969/j.issn.1003-5451.2020.06.007

    LU Z S, CHEN X, ZHANG Z M. Research on wind tunnel test method of model of slit parafoil at upper edge[J]. Aviation Precision Manufacturing Technology, 2020, 56(6): 26-29, 58. (in Chinese) doi: 10.3969/j.issn.1003-5451.2020.06.007
    [14] BELAMADI R, DJEMILI A, ILICA A, et al. Aerodynamic performance analysis of slotted airfoils for application to wind turbine blades[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 151: 79-99. DOI: 10.1016/j.jweia.2016.01.011
    [15] XIE Y H, CHEN J H, QU H C, et al. Numerical and experimental investigation on the flow separation control of S809 airfoil with slot[J]. Mathematical Problems in Engineering, 2013, 2013: 1-14. DOI: 10.1155/2013/301748
    [16] WHITMAN N, SPARKS R, ALI S, et al. Experimental investigation of slotted airfoil performance with modified slot configurations[C]// 24th AIAA Applied Aerodynamics Conference, San Francisco, California. Reston, Virginia: AIAA, 2006: 3481. DOI: 10.2514/6.2006-3481
    [17] 陈更林, 王利军, 闫小康, 等. 开缝翼型特性对轴流风机反风影响的数值模拟[J]. 煤炭学报, 2010, 35(8): 1395-1400. doi: 10.13225/j.cnki.jccs.2010.08.030

    CHEN G L, WANG L J, YAN X K, et al. Numerical simulation on effect of aerodynamic performance of airfoil with slot on reverse ventilation of axial-flow fan[J]. Journal of China Coal Society, 2010, 35(8): 1395-1400. (in Chinese) doi: 10.13225/j.cnki.jccs.2010.08.030
    [18] MOHAMED O S, IBRAHIM A A, ETMAN A K, et al. Numerical investigation of Darrieus wind turbine with slotted airfoil blades[J]. Energy Conversion and Management: X, 2020, 5: 100026. DOI: 10.1016/j.ecmx.2019.100026
    [19] NI Z, DHANAK M, SU T C. Improved performance of a slotted blade using a novel slot design[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 189: 34-44. DOI: 10.1016/j.jweia.2019.03.018
    [20] NI Z, DHANAK M, SU T C. Performance characteristics of airfoils with leading-edge tubercles and an internal slot[J]. AIAA Journal, 2019, 57(6): 2394-2407. DOI: 10.2514/1.J058145
    [21] BEYHAGHI S, AMANO R S. A parametric study on leading-edge slots used on wind turbine airfoils at various angles of attack[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 175: 43-52. DOI: 10.1016/j.jweia.2018.01.007
    [22] BEYHAGHI S, AMANO R S. Improvement of aerodynamic performance of cambered airfoils using leading-edge slots[J]. Journal of Energy Resources Technology, 2017, 139(5): 051204. DOI: 10.1115/1.4036047
    [23] 杨科, 王会社, 徐建中, 等. 开缝式风力机静态失速特性的研究[J]. 工程热物理学报, 2008, 29(1): 32-35. doi: 10.3321/j.issn:0253-231X.2008.01.010

    YANG K, WANG H S, XU J Z, et al. Stalling feature research of wind turbine with fin[J]. Journal of Engineering Thermophysics, 2008, 29(1): 32-35. (in Chinese) doi: 10.3321/j.issn:0253-231X.2008.01.010
    [24] 张立军, 马东辰, 顾嘉伟, 等. 翼缝形状对垂直轴风力机翼型气动性能的影响[J]. 中南大学学报(自然科学版), 2019, 50(8): 1848-1856. doi: 10.11817/j.issn.1672-7207.2019.08.012

    ZHANG L J, MA D C, GU J W, et al. Influence of shape of slotted airfoil on aerodynamic performance of vertical axis wind turbine[J]. Journal of Central South University (Science and Technology), 2019, 50(8): 1848-1856. (in Chinese) doi: 10.11817/j.issn.1672-7207.2019.08.012
    [25] 张振辉, 李栋, 杨茵. 基于前缘缝翼微型后缘装置的多段翼型被动流动控制[J]. 航空学报, 2017, 38(5): 120650. doi: 10.7527/S1000-6893.2017.120650

    ZHANG Z H, LI D, YANG Y. Passive flow control of multi-element airfoils using slat mini-trailing edge device[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(5): 120650. (in Chinese) doi: 10.7527/S1000-6893.2017.120650
    [26] WOOD N, NIELSEN J. Circulation control airfoils - Past, present, future[C]// 23rd Aerospace Sciences Meeting, Reno, NV. Reston, Virginia: AIAA, 1985: 204. doi: 10.2514/6.1985-204
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  14
  • HTML全文浏览量:  3
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-25
  • 录用日期:  2023-02-01
  • 修回日期:  2023-01-10
  • 网络出版日期:  2023-03-13

目录

    /

    返回文章
    返回