留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

直流放电控制高速带斜坡锥体气动力的有效性

王宏宇 闵夫 解真东 龙正义 贾尧 杨彦广

王宏宇, 闵夫, 解真东, 等. 直流放电控制高速带斜坡锥体气动力的有效性[J]. 空气动力学学报, 2023, 41(X): 1−10 doi: 10.7638/kqdlxxb-2022.0195
引用本文: 王宏宇, 闵夫, 解真东, 等. 直流放电控制高速带斜坡锥体气动力的有效性[J]. 空气动力学学报, 2023, 41(X): 1−10 doi: 10.7638/kqdlxxb-2022.0195
WANG H Y, MIN F, XIE Z D, et al. Effectiveness of direct current discharge on hypersonic aerodynamic control for a conical model with ramps[J]. Acta Aerodynamica Sinica, 2023, 41(X): 1−10 doi: 10.7638/kqdlxxb-2022.0195
Citation: WANG H Y, MIN F, XIE Z D, et al. Effectiveness of direct current discharge on hypersonic aerodynamic control for a conical model with ramps[J]. Acta Aerodynamica Sinica, 2023, 41(X): 1−10 doi: 10.7638/kqdlxxb-2022.0195

直流放电控制高速带斜坡锥体气动力的有效性

doi: 10.7638/kqdlxxb-2022.0195
基金项目: 国家重点研发计划(2019YFA0405300;国家自然科学基金(12002363,12202473)
详细信息
    作者简介:

    王宏宇(1989-),男,辽宁丹东人,助理研究员,研究方向:高速主动流动控制机理与方法研究. E-mail:wanghongyu@cardc.cn

    通讯作者:

    杨彦广*,研究员,研究方向:空气动力学. E-mail:yangyanguang@cardc.cn

  • 中图分类号: V711.7;O357.4 + 2;O354.3

Effectiveness of direct current discharge on hypersonic aerodynamic control for a conical model with ramps

  • 摘要: 本文基于直流放电激波重构气动力控制原理,开展了带斜坡锥体模型的高超声速(Ma = 6)气动力控制风洞试验,采用光纤天平技术考察了模型在两种放电功率(284 W和517 W)下的气动力/力矩变化情况,并采用纹影成像研究了放电对流动拓扑的影响。纹影图像揭示了由于放电热阻塞和马赫数降低引起的波系重构现象,表现为放电诱导压缩波和再附激波弱化、角度减小。天平信号验证了放电使得模型的轴向力、法向力和俯仰力矩减小,放电功率较大时控制效果明显。通过求解带功率密度源项的Navier-Stokes方程模拟放电的加热效应,数值研究了模型气动力随功率密度的变化规律及加热位置对控制能力的影响。研究表明,模型气动力变化率与功率密度呈正相关;当以激励器的上游位置为参考点时,俯仰力矩变化显著;当加热位置靠近斜坡时,控制能力降低。
  • 图  1  直流放电斜坡激波重构气动力控制原理图[25]

    Figure  1.  Schematic diagram of the aerodynamic force generation due to shock wave reconstruction with DC discharge[25]

    图  2  试验模型及风洞试验设置示意图

    Figure  2.  Schematic diagram of the test model and the wind tunnel experimental setup

    图  3  光纤天平设备

    Figure  3.  The FOB device

    图  4  天平校准示意图

    Figure  4.  Schematic diagram of the FOB calibration

    图  5  天平轴向力校准结果

    Figure  5.  Change in output value by load in the direction of the axial component of the balance

    图  6  来流条件下的电压和电流波形图

    Figure  6.  The voltage and current waveforms with inflow

    图  7  有无放电情形下的流场纹影图

    Figure  7.  Schlieren images of the flow fields with and without discharge

    图  8  天平气动载荷原始数据

    Figure  8.  Original data of the balance aerodynamic load

    图  9  气动力/力矩的变化及变化率

    Figure  9.  The changes in aerodynamic forces and moment

    图  10  计算物理模型示意图

    Figure  10.  The physical model of the numerical simulation

    图  11  计算网格

    Figure  11.  The calculation grids

    图  12  模型壁面压力云图和z = 0截面密度云图

    Figure  12.  The pressure contour on the wall and the density contour at plane of z = 0

    图  13  不同功率密度下轴向力和法向力及其变化率的计算结果

    Figure  13.  Numerical results of the axial force and the normal force and their change rates at different heating powers

    图  14  不同功率密度下俯仰力矩及其变化率的计算结果

    Figure  14.  Numerical results of the pitch moments and their change rates at different heating powers

    图  15  不同功率密度下轴向力和法向力及其变化率的计算结果

    Figure  15.  Numerical results of the axial force and the normal force and their change rates at different heating powers

    图  16  不同功率密度下俯仰力矩及其变化率的计算结果

    Figure  16.  Numerical results of the pitch moments and their change rates at different heating powers

    表  1  试验来流参数

    Table  1.   The parameters of the freestream

    参数数值
    马赫数 M6.1
    总压 p00.7 MPa
    总温 T0300 K
    速度 u729 m/s
    静压 p400.3 Pa
    静温 T35.53 K
    下载: 导出CSV

    表  2  基于放电参数的试验设置

    Table  2.   The experimental setup based on discharge parameters

    输入电流I/A输出功率P/W标记
    5 A284Case5A
    10 A517Case10A
    下载: 导出CSV
  • [1] WATANABE Y, LEONOV S B, HOUPT A, et al. Plasma-assisted control of Mach-2 flowfield over ramp geometry[J]. IOP Conference Series: Materials Science and Engineering, 2017, 249: 012006. DOI: 10.1088/1757-899x/249/1/012006
    [2] DONG H B, LIU J, CHEN Z D, et al. Numerical investigation of lateral jet with supersonic reacting flow[J]. Journal of Spacecraft and Rockets, 2018, 55(4): 928-935. DOI: 10.2514/1.A34096
    [3] ZHU J C, SHI Z W, FU J Q, et al. Aerodynamic characteristics of hypersonic airfoils based on jet flow control technology[J]. AIP Advances, 2021, 11(3): 035036. DOI: 10.1063/5.0033779
    [4] 吴云, 李应红. 等离子体流动控制研究进展与展望[J]. 航空学报, 2015, 36(2): 381-405.

    WU Y, LI Y H. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 381-405. (in Chinese)
    [5] 李应红, 吴云. 等离子体激励调控流动与燃烧的研究进展与展望[J]. 中国科学: 技术科学, 2020, 50(10): 1252-1273. doi: 10.1360/SST-2020-0111

    LI Y H, WU Y. Research progress and outlook of flow control and combustion control using plasma actuation[J]. SCIENTIA SINICA Technologica, 2020, 50(10): 1252-1273. (in Chinese) doi: 10.1360/SST-2020-0111
    [6] 陈加政, 胡国暾, 樊国超, 等. 等离子体合成射流对钝头激波的控制与减阻[J]. 航空学报, 2021, 42(7): 124773.

    CHEN J Z, HU G, FAN G C, et al. Bow shock wave control and drag reduction by plasma synthetic jet[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 124773. (in Chinese)
    [7] 王宏宇, 杨彦广, 胡伟波, 等. 高频微秒脉冲放电控制激波/边界层干扰非定常性的实验研究[J]. 航空学报, 2022, 43(1): 625905. doi: 10.7527/j.issn.1000-6893.2022.1.hkxb202201003

    WANG H Y, YANG Y G, HU W B, et al. Experimental study on unsteadiness characteristics of shock wave/turbulent boundary layer interaction controlled by high-frequency microsecond pulse discharge[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 625905. (in Chinese) doi: 10.7527/j.issn.1000-6893.2022.1.hkxb202201003
    [8] 王宏宇, 李军, 金迪, 等. 激波/边界层干扰对等离子体合成射流的 响应特性[J]. 物理学报, 2017, 66(8): 084705. doi: 10.7498/aps.66.084705

    WANG H Y, LI J, JIN D, et al. Resp onse of the sho ck wave/b oundary layer interaction to the plasma synthetic jet[J]. Acta Physica Sinica, 2017, 66(8): 084705. (in Chinese) doi: 10.7498/aps.66.084705
    [9] 周岩, 罗振兵, 王林, 等. 等离子体合成射流激励器及其流动控制技术研究进展[J]. 航空学报, 2022, 43(3): 025027.

    ZHOU Y, LUO Z B, WANG L, et al. Plasma synthetic jet actuator for flow control: review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 025027. (in Chinese)[万方]
    [10] SHANG Joseph J S, 严红, 刘凡. 等离子体激励器在航空航天工程中的应用前景[J]. 气体物理, 2018, 3(2): 1-12. doi: 10.19527/j.cnki.2096-1642.2018.02.001

    SHANG J, YAN H, LIU F. A prospective of plasma actuators in aerospace engineering[J]. Physics of Gases, 2018, 3(2): 1-12. (in Chinese) doi: 10.19527/j.cnki.2096-1642.2018.02.001
    [11] SHANG J S. Surface direct current discharge for hypersonic flow control[J]. Journal of Spacecraft and Rockets, 2008, 45(6): 1213-1222. DOI: 10.2514/1.37009
    [12] BISEK N, BOYD I, POGGIE J. Numerical study of energy deposition requirements for aerodynamic control of hypersonic vehicles[C]//46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada. Reston, Virginia: AIAA, 2008: 1109. doi: 10.2514/6.2008-1109
    [13] TANG M, WU Y, WANG H Y. Experimental investigation on hypersonic shock-shock interaction control using plasma actuator array[J]. Acta Astronautica, 2022, 198: 577-586. DOI: 10.1016/j.actaastro.2022.07.010
    [14] XIE W, LUO Z, ZHOU Y, et al. Experimental study on shock wave control in high-enthalpy hypersonic flow by using SparkJet actuator[J]. Acta Astronautica, 2021, 188: 416-425. DOI: 10.1016/j.actaastro.2021.07.032
    [15] LEONOV S, FALEMPIN F, YARANTSEV D, et al. Active steering of shock waves in compression ramp by nonuniform plasma[C]//48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, Florida. Reston, Virginia: AIAA, 2010: 260. doi: 10.2514/6.2010-260
    [16] LEONOV S B, FIRSOV A A, HOUPT A W. Suppression of reflected oblique shock wave by multi-filamentary plasma[J]. Journal of Physics: Conference Series, 2018, 1112: 012005. DOI: 10.1088/1742-6596/1112/1/012005
    [17] SHNEIDER M N, MACHERET S O, ZAIDI S H, et al. Virtual shapes in supersonic flow control with energy addition[J]. Journal of Propulsion and Power, 2008, 24(5): 900-915. DOI: 10.2514/1.34136
    [18] WATANABE Y, SUZUKI K. Aerodynamic control effect of surface DC plasma discharge at Mach-7 hypersonic flow[C]//46th AIAA Plasmadynamics and Lasers Conference, Dallas, TX. Reston, Virginia: AIAA, 2015: 2342. doi: 10.2514/6.2015-2342
    [19] 程邦勤, 孙权, 李军, 等. 基于等离子体气动激励的斜劈诱导激波控制[J]. 强激光与粒子束, 2010, 22(2): 348-352. doi: 10.3788/HPLPB20102202.0348

    CHENG B Q, SUN Q, LI J, et al. Ramp-induced shock wave control through plasma aerodynamic actuation[J]. High Power Laser and Particle Beams, 2010, 22(2): 348-352. (in Chinese) doi: 10.3788/HPLPB20102202.0348
    [20] 程钰锋, 聂万胜, 车学科, 等. 电弧放电等离子体对超声速边界层影响的数值模拟[J]. 宇航学报, 2012, 33(1): 27-32.

    CHENG Y F, NIE W S, CHE X K, et al. Numerical simulation to the effect of arc discharge plasma flow control on supersonic boundary layer[J]. Journal of Astronautics, 2012, 33(1): 27-32. (in Chinese)
    [21] YAN H, LIU F, XU J, et al. Study of oblique shock wave control by surface arc discharge plasma[J]. AIAA Journal, 2017, 56(2): 532-541. DOI: 10.2514/1.J056107
    [22] WANG H Y, XIE F, LI J, et al. Study on control of hypersonic aerodynamic force by quasi-DC discharge plasma energy deposition[J]. Acta Astronautica, 2021, 187: 325-334. DOI: 10.1016/j.actaastro.2021.06.049
    [23] WANG H Y, XIE F, LI J, et al. Effectiveness of millisecond pulse discharge on hypersonic oblique shock wave[J]. Physics of Fluids, 2021, 33(11): 116104. DOI: 10.1063/5.0065367
    [24] WANG H Y, MIN F, XIE Z D, et al. Quantitative study of the control of hypersonic aerodynamics using millisecond pulsed discharges[J]. Physics of Fluids, 2022, 34(2): 021701. DOI: 10.1063/5.0081599
    [25] 王宏宇, 谢峰, 李杰, 等. 等离子体能量沉积控制高超声速气动力研究[J]. 气动研究与实验, 2022, 34(01): 45-52. doi: 10.12050/are20220106

    WANG H Y, XIE F, LI J, et al. Research on hypersonic aerodynamic force control by arc plasma energy deposition[J]. Aerodynamic Research & Experiment, 2022, 34(01): 45-52 (in Chinese). doi: 10.12050/are20220106
    [26] XIE Z D, HE X, XIAO Y Q, et al. Ultrasensitive all-fiber inline Fabry-Perot strain sensors for aerodynamic measurements in hypersonic flows[J]. ISA Transactions, 2020, 102: 388-396. DOI: 10.1016/j.isatra.2020.02.020
    [27] ERDEM E, KONTIS K, YANG L. Steady energy deposition at Mach 5 for drag reduction[J]. Shock Waves, 2013, 23(4): 285-298. DOI: 10.1007/s00193-012-0405-8
    [28] KNIGHT D. Survey of aerodynamic drag reduction at high speed by energy deposition[J]. Journal of Propulsion and Power, 2008, 24(6): 1153-1167. DOI: 10.2514/1.24595
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  26
  • HTML全文浏览量:  15
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-12
  • 录用日期:  2023-01-15
  • 修回日期:  2022-01-09
  • 网络出版日期:  2023-02-14

目录

    /

    返回文章
    返回