Effectiveness of direct current discharge on hypersonic aerodynamic control for a conical model with ramps
-
摘要: 本文基于直流放电激波重构气动力控制原理,开展了带斜坡锥体模型的高超声速(Ma = 6)气动力控制风洞试验,采用光纤天平技术考察了模型在两种放电功率(284 W和517 W)下的气动力/力矩变化情况,并采用纹影成像研究了放电对流动拓扑的影响。纹影图像揭示了由于放电热阻塞和马赫数降低引起的波系重构现象,表现为放电诱导压缩波和再附激波弱化、角度减小。天平信号验证了放电使得模型的轴向力、法向力和俯仰力矩减小,放电功率较大时控制效果明显。通过求解带功率密度源项的Navier-Stokes方程模拟放电的加热效应,数值研究了模型气动力随功率密度的变化规律及加热位置对控制能力的影响。研究表明,模型气动力变化率与功率密度呈正相关;当以激励器的上游位置为参考点时,俯仰力矩变化显著;当加热位置靠近斜坡时,控制能力降低。Abstract: Based on the aerodynamic control principle of the direct current discharge that reconstructs a shock wave, the wind tunnel experiments at Mach 6 of hypersonic aerodynamic control for a conical model with ramps were conducted. The aerodynamic force/torque variations of the model at two discharge powers (284 W and 517 W) were acquired using fiber optic balance, and the corresponding changes of flow topology was studied using schlieren imaging. The schlieren images reveal the shock wave reconstruction caused by the discharge, which chokes the flow and reduces the local Mach number. Specifically, the discharge induces a compression wave and causes the attachment shock weakened with its angle reduction. The balance signal shows the axial force, normal force and pitching moment of the model decrease while discharging, and their changes are prominent with a larger power output. Further, the heating effects of discharge were simulated by solving the Navier-Stokes equations with an energy source, and the aerodynamic force variation with power density, as well as the effect of heating position on control ability were studied. The results show the aerodynamic changes are positively correlated with the power density; Taking the position upstream of the actuator as the reference point, the pitching moment of the model changes significantly; When the heating zone is located closer to the ramp, the control efficiency decreases.
-
表 1 试验来流参数
Table 1. The parameters of the freestream
参数 数值 马赫数 M∞ 6.1 总压 p0 0.7 MPa 总温 T0 300 K 速度 u∞ 729 m/s 静压 p∞ 400.3 Pa 静温 T∞ 35.53 K 表 2 基于放电参数的试验设置
Table 2. The experimental setup based on discharge parameters
输入电流I/A 输出功率P/W 标记 5 A 284 Case5A 10 A 517 Case10A -
[1] WATANABE Y, LEONOV S B, HOUPT A, et al. Plasma-assisted control of Mach-2 flowfield over ramp geometry[J]. IOP Conference Series: Materials Science and Engineering, 2017, 249: 012006. DOI: 10.1088/1757-899x/249/1/012006 [2] DONG H B, LIU J, CHEN Z D, et al. Numerical investigation of lateral jet with supersonic reacting flow[J]. Journal of Spacecraft and Rockets, 2018, 55(4): 928-935. DOI: 10.2514/1.A34096 [3] ZHU J C, SHI Z W, FU J Q, et al. Aerodynamic characteristics of hypersonic airfoils based on jet flow control technology[J]. AIP Advances, 2021, 11(3): 035036. DOI: 10.1063/5.0033779 [4] 吴云, 李应红. 等离子体流动控制研究进展与展望[J]. 航空学报, 2015, 36(2): 381-405.WU Y, LI Y H. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 381-405. (in Chinese) [5] 李应红, 吴云. 等离子体激励调控流动与燃烧的研究进展与展望[J]. 中国科学: 技术科学, 2020, 50(10): 1252-1273. doi: 10.1360/SST-2020-0111LI Y H, WU Y. Research progress and outlook of flow control and combustion control using plasma actuation[J]. SCIENTIA SINICA Technologica, 2020, 50(10): 1252-1273. (in Chinese) doi: 10.1360/SST-2020-0111 [6] 陈加政, 胡国暾, 樊国超, 等. 等离子体合成射流对钝头激波的控制与减阻[J]. 航空学报, 2021, 42(7): 124773.CHEN J Z, HU G, FAN G C, et al. Bow shock wave control and drag reduction by plasma synthetic jet[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 124773. (in Chinese) [7] 王宏宇, 杨彦广, 胡伟波, 等. 高频微秒脉冲放电控制激波/边界层干扰非定常性的实验研究[J]. 航空学报, 2022, 43(1): 625905. doi: 10.7527/j.issn.1000-6893.2022.1.hkxb202201003WANG H Y, YANG Y G, HU W B, et al. Experimental study on unsteadiness characteristics of shock wave/turbulent boundary layer interaction controlled by high-frequency microsecond pulse discharge[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 625905. (in Chinese) doi: 10.7527/j.issn.1000-6893.2022.1.hkxb202201003 [8] 王宏宇, 李军, 金迪, 等. 激波/边界层干扰对等离子体合成射流的 响应特性[J]. 物理学报, 2017, 66(8): 084705. doi: 10.7498/aps.66.084705WANG H Y, LI J, JIN D, et al. Resp onse of the sho ck wave/b oundary layer interaction to the plasma synthetic jet[J]. Acta Physica Sinica, 2017, 66(8): 084705. (in Chinese) doi: 10.7498/aps.66.084705 [9] 周岩, 罗振兵, 王林, 等. 等离子体合成射流激励器及其流动控制技术研究进展[J]. 航空学报, 2022, 43(3): 025027.ZHOU Y, LUO Z B, WANG L, et al. Plasma synthetic jet actuator for flow control: review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 025027. (in Chinese)[万方] [10] SHANG Joseph J S, 严红, 刘凡. 等离子体激励器在航空航天工程中的应用前景[J]. 气体物理, 2018, 3(2): 1-12. doi: 10.19527/j.cnki.2096-1642.2018.02.001SHANG J, YAN H, LIU F. A prospective of plasma actuators in aerospace engineering[J]. Physics of Gases, 2018, 3(2): 1-12. (in Chinese) doi: 10.19527/j.cnki.2096-1642.2018.02.001 [11] SHANG J S. Surface direct current discharge for hypersonic flow control[J]. Journal of Spacecraft and Rockets, 2008, 45(6): 1213-1222. DOI: 10.2514/1.37009 [12] BISEK N, BOYD I, POGGIE J. Numerical study of energy deposition requirements for aerodynamic control of hypersonic vehicles[C]//46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada. Reston, Virginia: AIAA, 2008: 1109. doi: 10.2514/6.2008-1109 [13] TANG M, WU Y, WANG H Y. Experimental investigation on hypersonic shock-shock interaction control using plasma actuator array[J]. Acta Astronautica, 2022, 198: 577-586. DOI: 10.1016/j.actaastro.2022.07.010 [14] XIE W, LUO Z, ZHOU Y, et al. Experimental study on shock wave control in high-enthalpy hypersonic flow by using SparkJet actuator[J]. Acta Astronautica, 2021, 188: 416-425. DOI: 10.1016/j.actaastro.2021.07.032 [15] LEONOV S, FALEMPIN F, YARANTSEV D, et al. Active steering of shock waves in compression ramp by nonuniform plasma[C]//48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, Florida. Reston, Virginia: AIAA, 2010: 260. doi: 10.2514/6.2010-260 [16] LEONOV S B, FIRSOV A A, HOUPT A W. Suppression of reflected oblique shock wave by multi-filamentary plasma[J]. Journal of Physics: Conference Series, 2018, 1112: 012005. DOI: 10.1088/1742-6596/1112/1/012005 [17] SHNEIDER M N, MACHERET S O, ZAIDI S H, et al. Virtual shapes in supersonic flow control with energy addition[J]. Journal of Propulsion and Power, 2008, 24(5): 900-915. DOI: 10.2514/1.34136 [18] WATANABE Y, SUZUKI K. Aerodynamic control effect of surface DC plasma discharge at Mach-7 hypersonic flow[C]//46th AIAA Plasmadynamics and Lasers Conference, Dallas, TX. Reston, Virginia: AIAA, 2015: 2342. doi: 10.2514/6.2015-2342 [19] 程邦勤, 孙权, 李军, 等. 基于等离子体气动激励的斜劈诱导激波控制[J]. 强激光与粒子束, 2010, 22(2): 348-352. doi: 10.3788/HPLPB20102202.0348CHENG B Q, SUN Q, LI J, et al. Ramp-induced shock wave control through plasma aerodynamic actuation[J]. High Power Laser and Particle Beams, 2010, 22(2): 348-352. (in Chinese) doi: 10.3788/HPLPB20102202.0348 [20] 程钰锋, 聂万胜, 车学科, 等. 电弧放电等离子体对超声速边界层影响的数值模拟[J]. 宇航学报, 2012, 33(1): 27-32.CHENG Y F, NIE W S, CHE X K, et al. Numerical simulation to the effect of arc discharge plasma flow control on supersonic boundary layer[J]. Journal of Astronautics, 2012, 33(1): 27-32. (in Chinese) [21] YAN H, LIU F, XU J, et al. Study of oblique shock wave control by surface arc discharge plasma[J]. AIAA Journal, 2017, 56(2): 532-541. DOI: 10.2514/1.J056107 [22] WANG H Y, XIE F, LI J, et al. Study on control of hypersonic aerodynamic force by quasi-DC discharge plasma energy deposition[J]. Acta Astronautica, 2021, 187: 325-334. DOI: 10.1016/j.actaastro.2021.06.049 [23] WANG H Y, XIE F, LI J, et al. Effectiveness of millisecond pulse discharge on hypersonic oblique shock wave[J]. Physics of Fluids, 2021, 33(11): 116104. DOI: 10.1063/5.0065367 [24] WANG H Y, MIN F, XIE Z D, et al. Quantitative study of the control of hypersonic aerodynamics using millisecond pulsed discharges[J]. Physics of Fluids, 2022, 34(2): 021701. DOI: 10.1063/5.0081599 [25] 王宏宇, 谢峰, 李杰, 等. 等离子体能量沉积控制高超声速气动力研究[J]. 气动研究与实验, 2022, 34(01): 45-52. doi: 10.12050/are20220106WANG H Y, XIE F, LI J, et al. Research on hypersonic aerodynamic force control by arc plasma energy deposition[J]. Aerodynamic Research & Experiment, 2022, 34(01): 45-52 (in Chinese). doi: 10.12050/are20220106 [26] XIE Z D, HE X, XIAO Y Q, et al. Ultrasensitive all-fiber inline Fabry-Perot strain sensors for aerodynamic measurements in hypersonic flows[J]. ISA Transactions, 2020, 102: 388-396. DOI: 10.1016/j.isatra.2020.02.020 [27] ERDEM E, KONTIS K, YANG L. Steady energy deposition at Mach 5 for drag reduction[J]. Shock Waves, 2013, 23(4): 285-298. DOI: 10.1007/s00193-012-0405-8 [28] KNIGHT D. Survey of aerodynamic drag reduction at high speed by energy deposition[J]. Journal of Propulsion and Power, 2008, 24(6): 1153-1167. DOI: 10.2514/1.24595 -