留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高阶间断有限元法的并行计算研究

夏轶栋 伍贻兆 吕宏强 宋江勇

夏轶栋, 伍贻兆, 吕宏强, 宋江勇. 高阶间断有限元法的并行计算研究[J]. 空气动力学学报, 2011, 29(5): 537-541. doi: 130.25/j.issn.0258-1825.2011.05.001
引用本文: 夏轶栋, 伍贻兆, 吕宏强, 宋江勇. 高阶间断有限元法的并行计算研究[J]. 空气动力学学报, 2011, 29(5): 537-541. doi: 130.25/j.issn.0258-1825.2011.05.001
XIA Yi-dong, WU Yi-zhao, LV Hong-qiang, SONG Jiang-yong. Parallel computation of a high-order discontinuous Galerkin method on unstructured grids[J]. ACTA AERODYNAMICA SINICA, 2011, 29(5): 537-541. doi: 130.25/j.issn.0258-1825.2011.05.001
Citation: XIA Yi-dong, WU Yi-zhao, LV Hong-qiang, SONG Jiang-yong. Parallel computation of a high-order discontinuous Galerkin method on unstructured grids[J]. ACTA AERODYNAMICA SINICA, 2011, 29(5): 537-541. doi: 130.25/j.issn.0258-1825.2011.05.001

高阶间断有限元法的并行计算研究

doi: 130.25/j.issn.0258-1825.2011.05.001
详细信息
    作者简介:

    夏轶栋(1985- ),男,硕士研究生,流体力学专业.

  • 中图分类号: V211.3

Parallel computation of a high-order discontinuous Galerkin method on unstructured grids

  • 摘要: 根据间断有限元法的数据结构特点,基于METIS网格分区技术,设计并行计算策略,在非结构网格上实现了并行高阶间断有限元法。控制方程的数值通量项使用Local Lax-Friedrichs(LLF)格式计算。设计了并行的牛顿-块高斯赛德尔法(Newton-Block GS)来加速收敛,提高迭代效率。并行性能分析表明,所设计的并行算法能够得到较好的加速比和并行效率,有效地节省计算时间,合理分配内存。这使得采用高阶间断有限元法计算更为复杂的问题成为可能。
  •     [1]LIN S Y, CHIN Y S. Discontinuous Galerkin finite element method for Euler and NavierStokes equations [J]. AIAA Journal, 1993: 2016-2023.
    [2]BASSI F, RRBAY S. Highorder accurate discontinuous finite element solution of the 2D Euler equations [J]. Journal of Computational Physics, 1997, 138(2): 251-285.
    [3]RASETARINERA P, HUSSAINI M Y. An efficient implicit discontinuous spectral Galerkin method [J]. Journal of Computational Physics, 2001: 718-738.
    [4]LESAINT P. Sur la resolution des systemes hyperboliques du premier order par des methods delements finis [D].Unversite Paris 6, 1975.
        [5]LESAINT P, RAVIART P A. On a finite element method to solve the neutron transport equation[M].// C. de Boor. Mathematical Aspects of Finite Elements in Partial DifferentialEquations. Academic Press, New York, 1974.
    [6]COCKBUTRN B, HOU S, SHU C W. TVD RungeKutta local projection discontinuous Galerkin finite element method for conservation laws Ⅱ: general framework [J]. Mathematics of Computation, 1989: 52-411.
    [7]COCKBUTRN B, HOU S, SHU C W. TVD Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws Ⅲ: one dimensional systems [J]. Journal of Computational Physics, 1989: 8490.
        [8]COCKBUTRN B, HOU S, SHU C W. TVD RungeKutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case [J]. Mathematics of Computation, 1990: 45-581.
    [9]吕宏强, 伍贻兆, 周春华, 等. 稀疏非结构网格上的亚声速流高精度数值模拟[J]. 航空学报, 2009, 30(2): 200-204.
    [10]贺立新, 张来平, 张涵信, 等. 任意单元间断Galerkin有限元计算方法研究 [J]. 空气动力学学报, 2007,25(2): 157-162.
    [11]贺立新, 张来平, 张涵信, 等. 间断Galerkin有限元和有限体积混合计算方法研究 [J]. 力学学报, 2007,39(1): 15-22.
    [12]COCKBURN B, KAMIADAKIS G E, SHU C W. Discontinuous Galerkin methods: theory, computation and applications [M]. Berlin: Springer, 1999.
    [13]LUO H, BAUM J D, LOHNER R. A p-multigrid discontinuous Galerkin method for the Euler equations on unstructured grids[J]. Journal of Computational Physics, 2006, 211(2): 767-783.
    [14]LU H Q. Highorder finite element solution of elastohydrodynamic lubrication problems [D]. Leeds, UK: University of Leeds, 2006.
    [15]HARTMANN R. Adaptive finite element methods for the compressible Euler equations [D]. Heidelberg, Germany: University of Heidelberg, 2002.
    [16]LU H Q, BERZINS M, GOODYER C E, et al. High order discontinuous Galerkin method for elastohydrodynamic lubrication line contact problems [J]. Communications in Numerical Methods in Engineering, 2005, 21(11):643-650.
  • 加载中
计量
  • 文章访问数:  2723
  • HTML全文浏览量:  13
  • PDF下载量:  1789
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-01-06
  • 刊出日期:  2011-10-25

目录

    /

    返回文章
    返回