干扰剪切流动稳定性理论及其对高雷诺数流动数值模拟方法的改进

高智

高智. 干扰剪切流动稳定性理论及其对高雷诺数流动数值模拟方法的改进[J]. 空气动力学学报, 2015, 33(2): 183-191. DOI: 10.7638/kqdlxxb-2014.0098
引用本文: 高智. 干扰剪切流动稳定性理论及其对高雷诺数流动数值模拟方法的改进[J]. 空气动力学学报, 2015, 33(2): 183-191. DOI: 10.7638/kqdlxxb-2014.0098
Gao Zhi. Interacting shear flow stability theory with application to improving computational method of simulating numerically high Reynolds number flows[J]. ACTA AERODYNAMICA SINICA, 2015, 33(2): 183-191. DOI: 10.7638/kqdlxxb-2014.0098
Citation: Gao Zhi. Interacting shear flow stability theory with application to improving computational method of simulating numerically high Reynolds number flows[J]. ACTA AERODYNAMICA SINICA, 2015, 33(2): 183-191. DOI: 10.7638/kqdlxxb-2014.0098

干扰剪切流动稳定性理论及其对高雷诺数流动数值模拟方法的改进

基金项目: 国家自然科学基金(11272324)
详细信息
    作者简介:

    高智(1937-),研究员,主要从事流体力学,计算流体力学研究.E-mail:gaozhi@imech.ac.cn

  • 中图分类号: V211.3

Interacting shear flow stability theory with application to improving computational method of simulating numerically high Reynolds number flows

  • 摘要: 在干扰剪切流(Interacting Shear Flow, ISF)理论的基础上,提出ISF稳定性理论并把它用于改进高雷诺(Re) 数流动计算方法。(1) 高Re数内外绕流的RANS计算及工业标准PNS计算中,流动转捩的预测均基于经典边界层理论;然而转捩并非总是最早发生在边界层中,例如发生在壁面小突起、小凹坑、小窄缝等局部粘性/无粘强干扰区,这些强干扰区可能位于边界层内,但边界层理论并不适用于它们,又如转捩发生在分离点邻域强干扰区等。(2) ISF理论表明:高Re数内外绕流为一复杂ISF,转捩总是最早发生在该ISF的层流区中。(3) ISF稳定性理论表明:作者提出的干扰剪切扰动流(Interacting Shear Perturbed Flow, ISPF)方程组可以计算ISF层流中非湍流扰动运动演化并预测转捩;ISF方程组和ISPF方程组分别与PNS和抛物化稳定性方程(PSE)为同类方程组,PSE分析计算边界层稳定性的众多成功实践,说明用ISPF(即PSE)方程组计算ISF层流扰动流并预测转捩完全可行。(4) RANS和PNS方法经ISF稳定性理论改进后,在转捩前用ISF方程组(即PNS)计算ISF层流基本流,用ISPF方程组(即PSE)计算ISF层流扰动流并预测转捩位置;转捩后RANS方法计算RANS或RANS/LES,PNS 方法计算干扰剪切湍流(ISTF)方程组即抛物化RANS(PRANS)方程组。改进后的两方法,理论合理正确,方程体系完备、自洽,ISF方程组只能用ISPF方程组相配对,因此是高Re数内外绕流计算的理想且可持续发展的两种方法。
    Abstract: On the basis of the interacting shear flow (ISF) theory proposed by the author, the ISF stability theory and its two inferences with application to improving computational methods of simulating numerically high Reynolds (Re) number inner/outer flows are presented in this paper. (1) In the RANS computations and an industry-standard PNS computations for high Reynolds number flows over bodies, predicting transition is always based on the classical boundary-layer theory coupled with experimental data; however, transition does not always occur originally in boundary-layer, initial transition may occur in dents, or small step or small cracks at wall, these local strong interaction flow regions may locate in boundary layer, but boundary-layer theory is not suitable for these flow regions, and transition occurs in strong interaction flow region near separation point etc. (2) Flow transition occurs always in interacting shear flow, ISF theory extracted by the author is composed of viscous shear layer and its neighbor outer inviscid flow with interaction each other; ISF summarizes many viscous-inviscid flows with basis meanings and engineering values, two typical example of ISF are the classical viscous boundary layer added its neighbor outer inviscid flow, and the viscous/inviscid flow near wall in high Re number inner/outer flows over bodies. (3) The interacting shear perturbed flow (ISPF) equations offer new theoretical computational method to simulate non-turbulence perturbed motion and transition in ISF. The ISF- equations and ISPF equations are respectively the same kind of PNS- and PSE- equations. Many works of using PSE analyses and computes boundary-layer stability show that it is perfectly feasible to compute perturbed flow of ISF and predict transition using ISPF (or PSE) equations. (4) The computational results given by solving simultaneously ISF- and ISPF equations are reasonable approximation of the direct numerical simulation (DNS) of ISF before transition. (5) Integrating the ISF stability theory and its two inferences with both of the traditional PNS method and the current RANS, RANS/LES methods (call them RANS method unitedly here) leads to several substantial improvements of this two methods. Such as, avoiding artificial assumption of transition location or estimating experientially transition location on the basis of the boundary layer stability theory etc.. Both of improved PNS- and RANS-methods compute simultaneously ISF- and ISPF-equations, that provide reasonable approximation of direct numerical simulation (DNS) of ISF before transition; after transition the improved PNS method computes parabolized RANS(PRANS) equations and the improved RANS method computes RANS, RANS/LES equations and both of this two calculations provide reasonable approximation of statistical average flow given by DNS of interacting shear turbulent flow. (6) In the improved these two methods, equation system is perfect and self-affirming, therefore they are ideal methods for computing high Re number inner/outer flows over bodies and would have broad prospects of development and application.
  • [1] Spalart P R. Strategies for turbulence modeling and simulations[J]. Inter. J. of Heat and Fluid Flow, 2000, 21:252-263.
    [2] Anderson J D Jr. Hypersonic and high-temperature gas synamics[R]. 2nd ed., AIAA Education Series, 2006.
    [3] Schlichting H, Gersten K. Boundary-layer theory[M]. Springer 2000.
    [4] Luo Jisheng, Shen Qing, Yang Wubin. Transition and its prediction of compressible shear-layer flow[M]//Fluid Dynamics. Beijing:Scientific press of China, 2014:72-94. (in Chinese)罗纪生, 沈清, 杨武兵. 可压缩剪切层的转捩及其预测[M]//流体动力学. 北京:科学出版社, 2014:72-94.
    [5] Walters D K, Leylek J H. A new model for boundary layer transition using a single-point RANS approach[J]. J. Turbomach, 2004, 126:193-302.
    [6] Wang Liang, Fu Song. A turbulent-flow transition model suitable to supersonic boundary flows[J]. Acta Mechanica Sinica, 2009, 42(2):162-168.(in Chinese)王亮, 符松. 一种适用于超声速边界层的湍流转捩模式[J]. 力学学报, 2009, 4(2):162-168.
    [7] Reda D. Review and synthesis of roughness-dominated transition correlation for reentry applications[J]. J. Spacecraft & Rockets, 2002, 39(2):161-167.
    [8] Kong Weixuan, Gao Ruizhe, Yan Chao. Hypersonic boundary layer transition prediction by empirical transition criteria[C]//The proceeding of 15th National Computational Fluid Mechanics Conference, Shandong, 2012:164-169. (in Chinese)孔未萱, 高瑞泽, 阎超. 经验转捩准则对高超声速从边界层转捩的预测[C]//第十五届全国计算流体会议论文集, 山东烟台, 2012:164-169.
    [9] Su Caihong, Zhou Heng. Transition prediction of hypersonic sharp cone boundary layer flow with small angle of attack and improvement of eN method[J]. Science in China(Series G), 2009, 39(1):123-130. (in Chinese)苏彩虹, 周恒. 小攻角高超声速尖锥边界层的转捩预测及eN方法的改进[J]. 中国科学(G辑), 2009, 39(1):123-130.
    [10] Herbert T. Parabolized stability equations[J]. Annu. Rev. Fluid Mech., 1997, 29:245-283.
    [11] Chang C. The Langley stability and transition analysis code (lastrac); 1st, linear and nonlinear PSE for 2D, axisymmetric and infinite swept wing boundary layer[R]. AIAA 2003-974, 2003.
    [12] Choudhari M, Chang C L, Jentink T, et al. Transition PSE analysis for the HIFiRE-5 vehicle[R]. AIAA 2009-4056, 2009
    [13] Hu S H, Zhong X. Nonparallel stability analysis of compressible boundary layer using 3-D PSE[R]. AIAA 99-0813, 1999.
    [14] Gao Zhi. Viscous-inviscid interacting flow theory[J]. Acta Mechanica Sinica, 1990, 6(2):102-110.
    [15] Gao Zhi. Interacting shear flow(ISF) theory, diffusion parabolized NS equations and wall-surface criteria and the applications[J]. Chinese Mechanics Abstracts, 2007, 21(3):13-22. (in Chinese)高智. 干扰剪切流(ISF)理论、扩散抛物化NS方程组和壁面判据及它们的应用[J]. 中国力学文摘, 2007, 21(3):13-22.
    [16] Gao Zhi. Interacting shear flow (ISF) and boundary-layer flow and applications of ISF theory in computational fluid dynamics[J]. Advances in Mechanics, 2008, 38(1):114-116. (in Chinese)高智. 干扰剪切流动(ISF)和边界层流动及ISF理论在计算流体力学中的应用[J]. 力学进展, 2008, 38(1):114-116.
    [17] Gao Zhi. Strong viscous layer flow theory with application to viscous flow computation[J]. Acta Aerodynamica Sinica, 2001, 19(4):420-426. (in Chinese)高智. 强粘性层流理论及在粘性流计算中的应用[J]. 空气动力学学报, 2001, 19(4):420-426.
    [18] Gao Zhi. Invariance of interactive-structure between convection and diffusion[J]. Acta Mechanics Sinica, 1992, 24(6):661-670. (in Chinese)高智. 对流扩散相互作用结构的不变性[J]. 力学学报, 1992, 24(6):661-670.
    [19] Rubin S G, Tannehill J C. Parabolized/Reduced Navier-Stokes computational techniques[J]. Annu. Review Fluid Mech., 1992, (24):117-139.
    [20] Tannehill J C, Anderson D A, Pletcher R H. Computational fluid mechanics and heat transfer[M]. 2nd ed. New York:Hemisphere press, 1997.
    [21] Yu Y. Review on Parabolized Navier-Stokes (PNS) equations and Gao's PNS theory with inferences and applications[J]. Acta Aerodynamica Sinica, 2015, 33(1):54-65.
    [22] Li G B, Dai M G, Gao Z. An application of interacting shear flows (ISF) theory:exact solution for unsteady oblique stagnation pointflow[J]. Acta Mechanica Sinica, 2006, 22:397-402.
    [23] Baldwin B S, Lomax H. Thin-layer Navier-Stokes approximation and algebraic model for separated turbulent flows[R]. AIAA 78-0257, 1978.
    [24] Blottner F G. Significance of the thin-layer Navier-Stokes approximation[M]//Cebeci T. Numerical and physical aspects of aerodynamic Flows. New York:Springer-Verlag, 1986:184-205.
    [25] Zhuang Fenggan, Zhang Deliang. Significance of diffusion-parabolized NS equations and its application to computational fluid dynamics[J]. Acta Aerodynamica Sinica, 2003, 21(1):1-10. (in Chinese)庄逢甘, 张德良. 扩散抛物化(DP)NS方程组的意义及其在计算流体力学(CFD)中的应用[J]. 空气动力学学报, 2003, 21(1):1-10.
    [26] Bertin J J, Cummings R M, Critical hypersonic aerothermodynamics phenomena[J]. Annu. Rev. Fluid Mech., 2006, 38:129-157.
    [27] Herbert T H, Bertoloti F P. Stability analysis of non-parallel boundary layer[J]. Bull. Am. Phys. Soc., 1987, 32:2097-2806.
    [28] Chang C L. The langley stability and transition analysis code(LASTRAC) Part 1 LST, linear and nonlinear PSE for 2D, axisymmeteric and infinite swept wing boundary layers[R]. AIAA 2003-0974.
计量
  • 文章访问数:  271
  • HTML全文浏览量:  9
  • PDF下载量:  789
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-16
  • 修回日期:  2015-01-10
  • 网络出版日期:  2021-01-07
  • 刊出日期:  2015-04-24

目录

    /

    返回文章
    返回