基于物理信息神经网络的飞机气动参数辨识方法

A physics informed neural network based method for aircraft aerodynamic parameter identification

  • 摘要: 在飞机设计与研制过程中,通过气动参数辨识建立可靠的飞行动力学模型非常重要。传统的气动参数辨识工程算法,诸如极大似然法,需要给出合理的飞行动力学模型以及待辨识参数的初值。基于传统神经网络的气动参数辨识可以避免飞行动力学建模过程,这种方法需要通过增量法、导数法间接地从神经网络提取气动参数。本文提出了一种基于物理信息神经网络的飞机气动参数辨识方法,可将含待辨识参数的飞行动力学模型作为正则项加入损失函数,直接辨识得到气动参数。该方法可以显著减少建模数据需求,也能提高建模精度。飞行仿真数据验证结果表明,该方法的无噪声、含2%噪声仿真数据,纵向飞行状态空间模型辨识最大相对误差分别为1.80%、4.64%,表明了基于物理信息神经网络的飞机气动参数辨识方法具有可行性,并对含噪声的飞行数据具有泛化性。

     

    Abstract: It is of great importance to establish a reliable flight dynamic model based on aerodynamic parameter identification in the process of aircraft design. Traditional engineering methods for aerodynamic parameter identification, such as the maximum likelihood method etc., require a reasonable dynamic model and initial values for the parameters to be identified. The identification of aerodynamic parameters based on traditional neural networks has no requirement for the flight dynamic model and parameter initialization. In this study, an aerodynamic parameter identification method based on physics informed neural network (PINN) is proposed, which can directly identify aerodynamic parameters by incorporating the flight dynamic model as a regularization term into the loss function. This method can significantly reduce the required training data and improve the modeling accuracy. Verification results for the flight simulation data show that the maximum relative errors of the PINN based method on the longitudinal flight state space model identification with no noise and 2% noise are 1.80% and 4.64%, respectively. It suggests that the PINN based aerodynamic parameter identification method is feasible and has the generalization capacity to noisy flight data.

     

/

返回文章
返回