留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2019年度优秀论文

文章列表
新一代环保型超声速客机气动相关关键技术与研究进展
韩忠华, 乔建领, 丁玉临, 王刚, 宋笔锋, 宋文萍
2019, 37(4): 620-635. doi: 10.7638/kqdlxxb-2018.0288
[摘要](286) HTML(73) PDF(132)
摘要:
更快的旅行速度是人类永恒的追求。虽然以"协和"号和"图144"为代表的第一代超声速客机商业运营失败,但之后人类从来就没有停止过对新一代更加环保的超声速客机的探索与研究。本文首先梳理总结了其中首要突破的四大关键技术(声爆预测及其抑制技术、超声速减阻技术、变循环发动机技术、低声爆低阻布局与综合优化设计技术),并对其国内外研究进展情况进行了文献综述,对研究现状进行了分析。其次,介绍了西北工业大学超声速客机研究中心在声爆预测理论与方法、声爆抑制技术、低声爆低阻布局与综合优化技术、超声速层流减阻技术等方面的研究进展。最后,针对发展新一代环保型超声速客机当前急需突破的关键科学与技术问题,探讨了未来需重点研究的方向。
高超声速高焓风洞试验技术研究进展
姜宗林
2019, 37(3): 347-355. doi: 10.7638/kqdlxxb-2019.0009
[摘要](176) HTML(41) PDF(138)
摘要:
高焓风洞及其试验技术是助力人类进入高超声速飞行时代的基石,近年来取得了长足的进展。本文首先重点介绍了四种典型驱动模式的高焓风洞,即直接加热型高超声速风洞、加热轻气体驱动激波风洞、自由活塞驱动激波风洞和爆轰驱动激波风洞。通过这些代表性风洞的介绍,讨论了相关风洞的理论基础和关键技术及其长处与不足。由于高超声速高焓流动具高温热化学反应特征,风洞试验技术研究还包含着针对高焓特色的测量技术发展。本文介绍了三种主要测量技术:气动热测量技术、气动天平技术和光学测量技术。这些技术是依据常规风洞试验测量需求而研制的,又根据高焓风洞的特点得到了进一步的改进和完善。最后对高超声速高焓风洞试验技术发展做了简单展望。
射流破碎的线性不稳定性分析方法
李帅兵, 司廷
2019, 37(3): 356-372. doi: 10.7638/kqdlxxb-2018.0153
[摘要](208) HTML(44) PDF(85)
摘要:
线性不稳定性分析是目前处理柱状射流及复合射流破碎的最常用理论方法之一。该方法基于流体力学基本方程和边界条件,利用线化小扰动法和正则模法开展相关研究,能够成功预测实验中发现的不同流动现象和规律。线化小扰动法的原理是将非线性问题中涉及的物理量分解成零阶近似和小扰动,代入原非线性方程并略去高阶小量,从而使非线性问题转化为一阶近似的线性定解问题。正则模法是将小扰动量分解成一系列模态的叠加(比如Fourier级数形式),使每个模态都满足线性系统,从而将线性定解问题转化为求解广义特征值问题。正则模法适用于具有对称性的流场,根据小扰动的演化情况,可以分为时间模式、空间模式和时空模式。本文回顾了射流及复合射流线性不稳定性分析方法的主要内容和具体实施步骤,并选取流动聚焦这一代表性的微细射流生成技术,概述了线性不稳定性分析方法在实际中的应用,最后对已取得的相关成果进行了总结。
智能可变形飞行器关键技术发展现状及展望
白鹏, 陈钱, 徐国武, 刘荣健, 董二宝
2019, 37(3): 426-443. doi: 10.7638/kqdlxxb-2019.0030
[摘要](454) HTML(113) PDF(178)
摘要:
智能可变形飞行器是当前航空航天飞行器研究领域的一个热点,是最有可能带来航空航天技术变革,产生颠覆性影响的领域之一,因此受到国内外的广泛关注。本文首先指出飞行器可变形的需求主要来源于如下几个方面,即:1)未来飞行器的飞行空域、速域不断扩大,固定外形可能无法满足不同飞行工况对飞行器气动和飞行性能的需求;2)单架飞行器实现多个飞行使命和任务,可能需要飞行器在执行不同飞行任务时具有不同的气动外形;3)提升现有飞行器的气动总体性能,要求其在各个飞行阶段,通过调整气动外形,使其始终保持优良的气动和飞行性能。介绍了现代意义上的智能可变形飞行器所包含的"变形"和"智能"两方面的含义,其中"变形"是指不同空间尺度(局部、分布、整体)和时间尺度的连续变形,涵盖的范围很宽。按照变形尺度和实现的功能将其划分为三类,即:局部变形(小变形)、分布式变形(中等尺度变形)、整体式变形(大尺度变形)。按照实现方式将其划分为两类:机械式变形和基于智能材料结构的变形。并指出当前这个领域的所谓"智能"基本都限制在智能材料或结构、智能控制等较为单一的领域,距离理想的智能变形有很大差距。本论文的论述重点放在可变形技术所涉及的基础科学问题和关键技术。第二,从1903年人类第一架依靠柔性变形机翼实现控制的莱特兄弟的带动力飞行器起,到20世纪六七十年代以F14为代表的变后掠翼技术,至近些年来在湾流Ⅲ飞机上成功实现飞行演示验证的连续变后缘弯度技术,系统地介绍了可变形飞行器的发展历程。第三,分别从可变形飞行器设计所面临的关键技术和可变形飞行器两大基础科学问题及技术瓶颈问题的角度,系统地介绍了可变形飞行器所面临的关键问题和国内外研究进展。从设计的角度看,主要问题在于:智能可变形飞行器需求分析和概念研究,智能可变形飞行器总体和分系统设计技术。从基础科学问题和瓶颈技术的角度看,主要问题在于两个方面,即:可变形飞行器气动、飞行力学和飞行控制,变形结构、驱动与变形控制。第四,针对智能可变形飞行器的内涵、可变形的技术指标、变形材料与结构以及效费分析等几个方面进行了有益的探讨。最后对智能可变形飞行器技术的未来发展进行了展望,指出智能可变形飞行器技术是螺旋式发展的,一方面需要开展广泛系统的基础理论和关键技术探索研究,从基础做起;另一方面需要从工程化的角度梳理可变形飞行器一类或几类较为明确的背景需求,以牵引该领域的有序快速发展。
机器学习在湍流模型构建中的应用进展
张伟伟, 朱林阳, 刘溢浪, 寇家庆
2019, 37(3): 444-454. doi: 10.7638/kqdlxxb-2019.0036
[摘要](654) HTML(178) PDF(253)
摘要:
借助于高性能计算机和数据共享平台的发展,研究者可以获取大量的高分辨率湍流计算数据。近年来,随着深度神经网络等人工智能技术的发展,数据驱动的机器学习方法也开始应用于湍流模型中不确定度的量化以及模型的改进和构建中。湍流大数据与人工智能相结合是湍流研究的一个新领域。研究者在取得一定成果的同时也面临着诸多困难和挑战,例如模型的泛化能力和鲁棒性等。模型构建过程包含了数据处理、特征选择以及模型框架的选取与优化等诸多方面,这些方面在不同程度上影响模型的性能。本文从机器学习在湍流建模过程中的实现方法和模型的不同作用两方面分析总结了目前主要的研究工作进展,并对这类问题面临的挑战和未来的研究展望进行了阐述。
基于深度神经网络的粒子图像测速算法
蔡声泽, 许超, 高琪, 魏润杰
2019, 37(3): 455-461. doi: 10.7638/kqdlxxb-2019.0042
[摘要](370) HTML(93) PDF(144)
摘要:
粒子图像测速(PIV)作为一种流体力学实验技术,能够从流体图像中获取全局、定量的速度场信息。随着人工智能技术的发展,设计用于粒子图像测速的深度学习技术具有广泛的应用前景和研究价值。借鉴在计算机视觉领域用于运动估计的光流神经网络,采用人工合成的粒子图像数据集进行监督学习训练,从而获得适用于流体运动估计的深度神经网络模型,并且能够高效地提供单像素级别分辨率的速度场。文中采用人工合成的湍流流场粒子图像进行初步实验评估,并讨论PIV神经网络的隐藏层输出和内在原理,同时将训练而成的深度神经网络模型与传统的相关分析法、光流法对比;随后进行射流流场测速实验,验证深度神经网络PIV的实用性。实验结果表明,文中提出的基于深度神经网络的粒子图像测速在精度、分辨率、计算效率上具有优势。
有局部稀薄气体效应的高超声速流动数值模拟
欧吉辉, 赵磊, 陈杰
2019, 37(2): 193-200. doi: 10.7638/kqdlxxb-2018.0179
[摘要](166) HTML(24) PDF(106)
摘要:
近空间高超声速飞行器当飞行高度和速度足够高时,其流场计算可能要考虑稀薄气体效应,传统的计算流体力学(CFD)方法预测的阻力和升阻比将不够准确。而现有的模拟稀薄气体流动的计算方法由于其计算量巨大,难以在工程实际中应用。因此需要发展能用于近空间高超声速飞行器流场的可行、可靠的计算方法。陈杰和赵磊在文献[1]中针对边界层中既有强剪切而气体分子自由程又相对较大的情况进行分析,提出了刻画此类局部稀薄效应的无量纲参数Zh,并提出了在传统CFD中通过采用依赖于Zh参数的等效黏性系数考虑局部稀薄效应对阻力计算影响的研究思路。因此,本文尝试将此等效黏性系数纳入CFD模型中,以在70 km高空,以马赫数15飞行的小迎角钝平板为例,来检验计算方法是否合理可行。结果表明:和传统的CFD方法所得结果相比,新模型计算的阻力减小,升阻比增加,其改进的方向与现有飞行试验结果定性相符,且所增加的计算时间非常有限,可方便地应用于现有的计算空气动力学中。
面向精准工程湍流模型的理论研究
佘振苏, 唐帆, 肖梦娟
2019, 37(1): 1-18. doi: 10.7638/kqdlxxb-2018.0249
[摘要](262) HTML(37) PDF(370)
摘要:
长期以来,工程湍流模型建立在量纲分析和经验修正的基础上,绝对预测能力不足而且模型参数的意义不明确。关于湍流边界层的理论研究一直平行地在两条路线上前行,或是经验性地构造有关平均速度或动能的分布,或是利用数值模拟等技术对于湍流脉动结构进行精细刻画。二者之间的分割导致对湍流边界层物理图像的不完整,从而限制了对一系列相似性关系的揭示。新近发展的结构系综理论,立足于探索由于固壁对于流场的雷诺应力各个分量所表现的拉伸对称性约束,完成了一个对于平均速度和动能剖面的统一描述,从而形成了一个构建工程湍流模型的新思路:一方面,理论指导如何开展湍流DNS(Direct Numerical Simulation)和LES(Large Eddy Simulation)的大数据分析,提炼对定量描述复杂流动有物理意义的多层结构参数;另一方面,指导开发物理图像清晰、定量描述精确的新型湍流(代数)模型。结构系综理论揭示了壁湍流所共有的普适多层结构,完整地刻画了边界层湍流的雷诺数、马赫数相似性,有望推动理论空气动力学研究进入一个定量化、精确化的新阶段。
超强台风山竹近地层外围风速剖面演变特性现场实测
赵林, 杨绪南, 方根深, 崔巍, 宋丽莉, 葛耀君
2019, 37(1): 43-54. doi: 10.7638/kqdlxxb-2018.0297
[摘要](312) HTML(49) PDF(132)
摘要:
利用多普勒激光雷达在琼州海峡北岸徐闻地区从2018年9月15日12:28到2018年9月17日13:53对1822号超强台风山竹外围风场进行实测,获得台风登陆前29个小时至登陆后21个小时时间范围内每隔10 min一次的近地层风速剖面演变数据。总结台风远端风场演变过程的4个阶段:外围小风、登陆前强风切变、登陆后低空急流、台风远离时风速衰减;发现台风远端风场S形和反C形2种风剖面形态;总结距离台风中心230~750 km范围内最大风速高度沿台风半径向外先增大后减小的趋势;发现台风登陆前远端风场平均最大风速高度约360 m,平均风剖面幂指数0.41,登陆后平均最大风速高度约800 m,平均风剖面幂指数0.28;验证Vickery提出的对数律修正模型对台风远端风场风剖面形态的适用性,发现该模型对反C形风剖面拟合度较好,对S形风剖面上部重现度较差。
高速飞行器翼舵缝隙激波风洞精细测热试验研究
吴宁宁, 康宏琳, 罗金玲
2019, 37(1): 133-139. doi: 10.7638/kqdlxxb-2018.0156
[摘要](141) HTML(44) PDF(111)
摘要:
高速飞行器的气动控制翼舵面,为了转动灵活,在弹体和翼舵面之间存在缝隙。缝隙的存在会导致高速热气流进入,在舵轴根部产生强分离再附区域,形成高热、高压、高剪切严酷热环境,对飞行器的热防护提出了很高要求。由于影响翼舵缝隙流动的因素十分复杂,缝隙内热环境的准确预测非常困难。目前传统的激波风洞缝隙测热试验受限于薄膜热流传感器2 mm直径,只能在分离再附区布置有限测点,无法捕捉到热流峰值,导致计算与试验存在较大偏差。本文根据缝隙分离再附区热环境特点,针对精细测量的可行性,从传感器选取、测点布置方案、测量及数据后处理等方面进行了详细分析,提出了分布式热电偶精细测量方法,实现了采用点测热达到面测热的效果。针对简化的圆柱弹身加舵面的模型,完成翼舵缝隙精细测热试验,获得了翼舵干扰区峰值热流。试验研究了不同缝隙高度、舵偏角、迎角对翼舵干扰区热环境的影响规律,试验结果表明:翼舵缝隙对弹身干扰主要集中在舵轴干扰区。舵轴干扰区热环境随着缝隙高度的增加而增强,随着舵偏角和迎角的增大而增大。同时,试验结果与CFD计算结果对比表明,两者基本吻合。