Wang Kaichun, Yi Xian, Ma Honglin, Zhao Fan. Numerical simulation of thrust effect on droplet collection efficiency in airplane icing[J]. ACTA AERODYNAMICA SINICA, 2016, 34(3): 308-312. DOI: 10.7638/kqdlxxb-2015.0218
Citation: Wang Kaichun, Yi Xian, Ma Honglin, Zhao Fan. Numerical simulation of thrust effect on droplet collection efficiency in airplane icing[J]. ACTA AERODYNAMICA SINICA, 2016, 34(3): 308-312. DOI: 10.7638/kqdlxxb-2015.0218

Numerical simulation of thrust effect on droplet collection efficiency in airplane icing

More Information
  • Received Date: December 20, 2015
  • Revised Date: December 31, 2015
  • Available Online: January 07, 2021
  • A three dimensional numerical method for the calculation of the droplet collection efficiency in the process of icing for an airplane with thrust is presented. The flowfield of air is computed by multiple blocks grid and SIMPLE method based on the obtained distribution, the governing equations of water phase are solved, and then the droplet collection efficiency is obtained. Both governing equations of gas and water phase are written in the form of typical transport equations, and are solved with a same finite volume method, which makes the development of numerical code easier. The droplet collection efficiency on a transport airplane cruise configuration with thrust or without thrust is computed, and the impingement characteristics of different diameter droplets are obtained, then the distribution of droplet collection efficiency on the airplane are yielded. The results show that the thrust effect of airplane on droplet collection coefficient on the wing, the vertical tail and the stabilizer is not obviously and can be ignored. However, the main effect of airplane with thrust on droplet collection coefficient occurs on the leading edge of the nacelle. The collection efficiency of airplane with thrust is higher than that without thrust on the leading edge of the nacelle, the droplet impact range of airplane with thrust is bigger than that of no thrust.
  • [1]
    Cebeci T, Kefyeke F. Aircraft icing[J]. Annual Review of Fluid Mechanics, 2003, 35: 11-21.
    [2]
    Bragg M B, Broeren A P, Blumenthal L A. Iced-airfoil aerodynamics[J]. Progress in Aerospace Sciences, 2005, 41(5): 323-362.
    [3]
    Frank T Lynch, Abdollah Khodadoust. Effects of ice accretions on aircraft aerodynamics[J]. Progress in Aerospace Sciences, 2001, 37(8): 669-767.
    [4]
    Yi X. Numerical computation of aircraft icing and study on icing test scaling law[D]. Mianyang: China AerodynamicsResearch and Development Center, 2007. (in Chinese) 易贤. 飞机积冰的数值计算与积冰试验相似准则研究[D]. 绵阳: 中国空气动力研究与发展中心, 2007.
    [5]
    Yi X, Wang K C, Gui Y W, et al. Study on eulerian method for icing collection efficiency computation and its application[J]. Acta Aerodynamica Sinica, 2010, 28(5): 596-601. (in Chinese) 易贤, 王开春, 桂业伟, 等. 水滴撞击特性欧拉计算方法研究及应用[J]. 空气动力学学报, 2010, 28(5): 596-601
    [6]
    Yi X, Wang K C, Zhu G L, et al. A numerical method for simulation of three dimensional ice accretion on aircraft[C]//Recent Progresses in Fluid Dynamics Research, 2011: 161-164.
    [7]
    Yi X, Wang K C, Ma H L, et al. 3-D numerical simulation of droplet collection efficiency in large-scale wind turbine icing[J]. Acta Aerodynamica Sinica, 2013, 31(6): 745-751. (in Chinese) 易贤, 王开春, 马洪林, 等. 大型风力机结冰过程水滴收集率三维计算[J]. 空气动力学学报, 2013, 31(6): 745-751.
    [8]
    Yi X, Chen K, Wang K C. Application of CFD technology in wind turbine icing prober design[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2013, 30(3): 264-269.
    [9]
    Yi X, Gui Y W, Zhu G L. Numerical method of a three-dimensional ice accretion model of aircraft[J]. Acta Aeronautica et Astronautica sinica, 2010, 31(11): 2152-2158.(in Chinese) 易贤, 桂业伟, 朱国林.飞机三维结冰模型及其数值求解方法[J].航空学报, 2010, 31(11): 2152-2158.
    [10]
    Zhu G L, Kronast M. The calculation of ground effect on a car flow field using two dimensional Navier-Stokes equations[J]. Acta Aerodynamica Sinica, 1993, 11(1): 35-40.
    [11]
    Bragg M B, Gregorek G M, Shaw R J. An analytical approach to airfoil icing[R]. AIAA 81-0403, 1981.
    [12]
    Bourgault Y, Habashi W G, Dompierre J, et al. An eulerian approach to supercooled droplets impingement calculations[R]. AIAA 97-0176, 1997.
    [13]
    Tong X L, Luke E A. Eulerian simulations of icing collection efficiency using a singularity diffusion model[R]. AIAA 2005-1246.
    [14]
    Patankar S V. Numerical heat transfer and fluid flow[M]. New York: Mc-Graw-Hill, 1980.
    [15]
    Ferziger J H, Peric M. Computational methods for fluid dynamics[M]. 3rd Edition. Berlin: Springer-Verlag, 2002.
  • Related Articles

    [1]LIU Peiqing, CHEN Yue, ZHANG Jin, QU Qiulin. Numerical study of the effects of corner expansion ratio and installation angle of guide vanes on flow fields in BHAW wind tunnel[J]. ACTA AERODYNAMICA SINICA, 2023, 41(9): 82-95. DOI: 10.7638/kqdlxxb-2023.0006
    [2]WANG Yibin, MA Chenyang, LI Tong, ZHAO Ning, ZHU Chunling. Review of numerical studies on ship-helicopter coupled flowfield[J]. ACTA AERODYNAMICA SINICA, 2023, 41(3): 45-66. DOI: 10.7638/kqdlxxb-2022.0066
    [3]YU Yize, XU Shengli, ZHANG Mengping, ZHANG Zhuhe. Computation on premixed combustion of methane and air mixture induced by cylinders with different radiuses[J]. ACTA AERODYNAMICA SINICA, 2020, 38(1): 35-42. DOI: 10.7638/kqdlxxb-2018.0098
    [4]WANG Kaichun, MA Honglin, ZHAO Fan, GUAN Rui. Numerical simulation for effects of submarine fairwater shape on flow-induced noise[J]. ACTA AERODYNAMICA SINICA, 2018, 36(5): 774-779. DOI: 10.7638/kqdlxxb-2016.0054
    [5]WANG Peng, FANG Shuai, JIN Xin, ZHANG Weimin. Computational method on hypersonic aerodynamic heating for aerospace vehicle[J]. ACTA AERODYNAMICA SINICA, 2017, 35(5): 640-644. DOI: 10.7638/kqdlxxb-2015.0067
    [6]Sang Weimin, Hu Shaohua, Lu Tian. Numerical investigation of ice accretion effects at supercooled large droplet conditions[J]. ACTA AERODYNAMICA SINICA, 2016, 34(5): 549-555. DOI: 10.7638/kqdlxxb-2015.0222
    [7]Liu Gang, Xiao Zhongyun, Wang Jiantao, Liu Fan. Numerical simulation of missile air-launching process under rail slideway constraints[J]. ACTA AERODYNAMICA SINICA, 2015, 33(2): 192-197. DOI: 10.7638/kqdlxxb-2013.0109
    [8]白俊强, 李鑫, 华俊, 王昆. 过冷大水滴情况下的积冰数值模拟[J]. ACTA AERODYNAMICA SINICA, 2013, 31(6): 801-811.
    [9]YI Xian, WANG Kaichun, MA Honglin, ZHU Guolin. 3-D numerical simulation of droplet collection efficiency in large-scale wind turbine icing[J]. ACTA AERODYNAMICA SINICA, 2013, 31(6): 745-751.
    [10]DONG Weizhong, DING Mingsong, GAO Tiesuo, JIANG Tao. The influence of thermo-chemical non-equilibrium model and surface temperature on heat transfer rate[J]. ACTA AERODYNAMICA SINICA, 2013, 31(6): 692-698.
  • Cited by

    Periodical cited type(1)

    1. 杨升科,易贤,郭奇灵,刘森云,肖春华. 合成热射流对机翼表面温度特性影响的数值研究. 空气动力学学报. 2022(02): 59-66 . 本站查看

    Other cited types(5)

Catalog

    Article views (187) PDF downloads (682) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return