Citation: | LIU Peiqing, YI Yuan. Vortex interaction mechanism and control technology of canard configuration at high angle of attack[J]. ACTA AERODYNAMICA SINICA, 2020, 38(6): 1034-1046. DOI: 10.7638/kqdlxxb-2019.0022 |
[1] |
GLOSS B B. Effect of wing planform and canard location and geometry on the longitudinal aerodynamic characteristics of a close-coupled canard wing model at subsonic speeds[R]. NASA TN-D-7910, 1975.
|
[2] |
GLOSS B B. Effect of canard location and size on canard-wing interference and aerodynamic center shift related to maneuvering aircraft at transonic speeds[R]. NASA TN-D-7505, 1974.
|
[3] |
GLOSS B B, KAREN E. Washburn. A study of canard-wing interference using experimental pressure data at transonic speeds[R]. NASA TP-1355, 1979.
|
[4] |
GLOSS BB, WASHBURN K E. Load distribution on a close-coupled wing canard at transonic speeds[J]. Journal of Aircraft, 1978, 15(4):234-239. DOI: 10.2514/3.58347
|
[5] |
陈名乾.近距耦合鸭式布局动态机动中涡系干扰机理的数值研究[D].北京: 北京航空航天大学, 2014.
CHEN M Q. Numerical study on the mechanism of dynamic vortex interaction on a maneuvering close-coupled canard configuration[D]. Beijing: Beihang University, 2014. (in Chinese)
|
[6] |
DAVARI A R, ASKARI F, SOLTANI M R. canard flow improvement in a splitcanard configuration[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2015, 229(6):1076-1087. DOI: 10.1177/0954410014544180
|
[7] |
方宝瑞.飞机气动布局设计[M].北京:航空工业出版社, 1997.
|
[8] |
郑遂.鸭式布局先进战斗机研究进展[R].国防科研报告, GF-87282, 1995.
|
[9] |
马宝峰, 刘沛清, 邓学蓥.近距耦合鸭式布局气动研究进展[J].空气动力学学报, 2003, 21(3):320-329. doi: 10.3969/j.issn.0258-1825.2003.03.009
MA B F, LIU P Q, DENG X Y. Research advances on a close-coupled canard wing configuration[J]. Acta Aerodynamica Sinica, 2003, 21(3):320-329.(in Chinese) DOI: 10.3969/j.issn.0258-1825.2003.03.009
|
[10] |
HUMMEL D, OELKER H C. Low-speed characteristics for the wing-canard configuration of the international vortex flow experiment[J]. Journal of Aircraft, 1994, 31(4):868-878. DOI: 10.2514/3.46573
|
[11] |
OELKER H C, HUMMEL D. Investigations on the vorticity sheets of a close-coupled delta-canard configuration[J]. Journal of Aircraft, 1989, 26(7):657-666. DOI: 10.2514/3.45817
|
[12] |
SAMIMI S, DAVARI A R, SOLTANI M R. canard-wing interactions in subsonic flow[J]. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 2013, 37(M2):133. http://www.researchgate.net/publication/290934639_Canard-wing_interactions_in_subsonic_flow
|
[13] |
ER-EL J. Effect of wing/canard interference on the loading of a delta wing[J]. Journal of Aircraft, 1988, 25(1):18-24. DOI: 10.2514/3.45535
|
[14] |
HOWARD R M, O'LEARY J F.Flowfield study of a close-coupled canard configuration[J]. Journal of Aircraft, 1994, 31(4):908-914. DOI: 10.2514/3.46578
|
[15] |
PONTON A, LOWSON M, BARRETT R. The evaluation of canard couplings at high angles of attack[C]//Proc of the 30th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA. Reston, Virigina: AIAA, 1992. DOI: 10.2514/6.1992-281
|
[16] |
魏园.近距耦合鸭式布局涡系干扰方式及效果的实验研究[D].北京: 北京航空航天大学, 2004.
|
[17] |
温瑞英.近耦合鸭式布局鸭翼展向吹气涡控技术实验研究[D].北京: 北京航空航天大学, 2008.
WEN R Y. Experimental study on vortex-control technology of canard-spanwise blowing of close-coupled canard wing configurations[D]. Beijing: Beihang University, 2008. (in Chinese)
|
[18] |
樊文博.非共面鸭式布局鸭翼涡控制技术实验研究[D].北京: 北京航空航天大学, 2010.
FAN W B. Experiment study on canard vortex-control technology of non-coplanar canard wing configurations[D]. Beijing: Beihang University, 2010. (in Chinese)
|
[19] |
毛磊.鸭式布局大迎角复杂涡系干扰与破裂机理实验研究[D].北京: 北京航空航天大学, 2011.
MAO L. Experiment study on mechanism of vortex-interaction and vortex breakdown over canard configuration at high angles of attack[D]. Beijing: Beihang University, 2011. (in Chinese)
|
[20] |
BERGMANN A, HUMMEL D. Aerodynamic effects of canard position on a wing body configuration in symmetrical flow[C]//Proc of the 39th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA. Reston, Virigina: AIAA, 2001. DOI: 10.2514/6.2001-116
|
[21] |
刘沛清, 王亚平, 刘杰, 等.近距耦合鸭式布局复杂涡系的干扰机理[J].北京航空航天大学学报, 2012, 38(7):873-876, 881. doi: 10.13700/j.bh.1001-5965.2012.07.014
LIU P Q, WANG Y P, LIU J, et al. Vortex interaction mechanism over close-coupled canard configuration[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(7):873-876, 881. (in Chinese) DOI: 10.13700/j.bh.1001-5965.2012.07.014
|
[22] |
刘杰.近距耦合鸭式布局鸭翼涡控制数值研究[D].北京: 北京航空航天大学, 2010.
LIU J. Numerical study of vortex-control technology of the close-coupled canard wing configuration[D]. Beijing: Beihang University, 2010. (in Chinese)
|
[23] |
CAMPBELL J F. Effects of spanwise blowing on the pressure field and vortex-lift characteristics of a 44 deg swept trapezoidal wing[R]. NASA TN-D-7907, 1975.
|
[24] |
CAMPBELL J F. Augmentation of vortex lift byspanwise blowing[J]. Journal of Aircraft, 1976, 13(9):727-732. DOI: 10.2514/3.58703
|
[25] |
CAMPBELL J F, ERICKSON G E. Effects of spanwise blowing on the surface pressure distributions and vortex-lift characteristics of a trapezoidal wing-strake configuration[R]. N79-16803, 1979.
|
[26] |
ERICKSON G E. Effect ofspanwise blowing on the aerodynamic characteristics of the F-5E[J]. Journal of Aircraft, 1979, 16(10):695-700. DOI: 10.2514/3.58591
|
[27] |
ERICKSON G E, CAMPBELL J F. Flow visualization of vortices locked by spanwise blowing over wings featuring a unique leading-and trailing-edge flap system[R]. NASA TMX-72788, 1975.
|
[28] |
DIXON C J. Lift augmention by lateral blowing over a lifting surface[R]. AIAA 69-193, 1969.
|
[29] |
CORNISH Ⅲ J J. High lift applications of spanwise blowing[R]. ICAS Paper 70-09, 1970.
|
[30] |
DIXON C. Lift and control augmentation byspanwise blowing over trailing edge flaps and control surfaces[C]//Proc of the 4th Aircraft Design, Flight Test, and Operations Meeting, Los Angeles, CA, USA. Reston, Virigina: AIAA, 1972. DOI: 10.2514/6.1972-781
|
[31] |
THEISEN J G, SCRUGGS R M, DIXON C J. Theoretical and experimental investigations of vortex lift control byspanwise blowing. volume 2. three-dimensional theory for vortex-lift augmentation[R]. Defense Technical Information Center, 1973. DOI: 10.21236/ad0771304
|
[32] |
BRADLEY R G, WRAY W O. A conceptual study of leading-edge-vortex enhancement byblowing[J]. Journal of Aircraft, 1974, 11(1):33-38. DOI: 10.2514/3.60318
|
[33] |
BRADLY R G, WRAY W O, SMITH C W. An experimental investigation of leading-edge-vortex augmentation by spanwise[R]. NASA CR-132415, 1974.
|
[34] |
HUFFMAN J K, HAHNEF D E, JOHNSON T D Jr. Aerodynamic effects of distributedspanwise blowing on a fighter configuration[J]. Journal of Aircraft, 1987, 24(10):673-679. DOI: 10.2514/3.45506
|
[35] |
ERICKSON G E, CAMPBELL J F. Improvement of maneuver aerodynamics by spanwise blowing[R]. NASA TP-1065, 1977.
|
[36] |
ERICKSON G, SCHREINER J, ROGERS L. canard-wing vortex interactions at subsonic through supersonic speeds[C]//Proc of the 17th Atmospheric Flight Mechanics Conference, Portland, OR. Reston, Virginia: AIAA, 1990 DOI: 10.2514/6.1990-2814
|
[37] |
THEISEN J G, SCRUGGS R M, DIXON C J. Theoretical and experimental investigations of vortex lift control by spanwise blowing. Volume 2: Three-dimensional theory for vortex-lift augmentation[R]. Defense Technical Information Center, 1973. DOI: 10.21236/ad0771304
|
[38] |
秦燕华.展向射流与机翼前缘涡相互干扰机理的实验研究[D].北京: 北京航空航天大学, 1993.
|
[39] |
WIBOWO, BEKTI S, ROHMAT T A. Water tunnel flow visualization due to canard deflection effect on aircraft to improve stall delay performance[C]//4th International Conference on Science and Technology (ICST). IEEE, 2018.
|
[40] |
RE R J, CAPONE F J. Longitudinal aerodynamic characteristics of a fighter model with a close-coupled canard at Mach nmuber from 0.40 to 1.20[R]. NASA TP-1206, 1978.
|
[41] |
WEI Z C, ZHAN J X, HE X, et al. Influence of Gurney flaps on aerodynamic characteristics of a canard-configuration aircraft[J]. Aircraft Engineering and Aerospace Technology, 2019, 91(4):700-707. DOI: 10.1108/aeat-08-2017-0181
|
[42] |
JENKINS M, MEYER R. A large-scale low-speed tunnel test of a canard configuration with spanwise blowing[C]//Proc of the Aircraft Systems and Technology Meeting, Los Angeles, CA, USA. Reston, Virigina: AIAA, 1975. DOI: 10.2514/6.1975-994
|
[43] |
曹硕.非共面鸭式布局鸭翼涡控制技术实验研究[D].北京: 北京航空航天大学, 2010.
CAO S. Experiment study on canard vortex-control technology of non-coplanar canard wing configurations[D]. Beijing: Beihang University, 2010. (in Chinese)
|
[44] |
冯晓伟.鸭翼展向射流间接涡控技术PIV实验研究[D].北京: 北京航空航天大学, 2012.
FENG X W. PIV experiment study of canard spanwise-blowing indirect vortex control technique[D]. Beijing: Beihang University, 2012. (in Chinese)
|
[45] |
杨磊.鸭式布局鸭翼展向吹气间接涡控制机理数值研究[D].北京: 北京航空航天大学, 2011.
YANG L. Numerical study on indirect-vortex-control technology of canard-spanwise blowing on canard wing configuration[D]. Beijing: Beihang University, 2011. (in Chinese)
|
[1] | JIANG Xin, DU Juntao, SHANG Keming. Influence of tail-blowing control on aerodynamic drag of urban rail trains[J]. ACTA AERODYNAMICA SINICA, 2023, 41(7): 120-129. DOI: 10.7638/kqdlxxb-2022.0113 |
[2] | CHEN Wenli, GUO Yanjiao. Flow control of circular cylinder based on active suction and blow[J]. ACTA AERODYNAMICA SINICA, 2020, 38(5): 989-995. DOI: 10.7638/kqdlxxb-2020.0005 |
[3] | JIANG Yubiao, WANG Wanbo, ZHAO Guangyin, LAI Qingren, CHE Binghui. Experimental investigation on blowing control airfoil influenced by ground effect[J]. ACTA AERODYNAMICA SINICA, 2020, 38(5): 887-895. DOI: 10.7638/kqdlxxb-2020.0101 |
[4] | ZHU Xiaojun, LI Feng, OU Dongbin, ZHOU Kai, LU Zhiliang. Numerical simulation of flow control in lift-increase effect using air-blowing[J]. ACTA AERODYNAMICA SINICA, 2020, 38(1): 66-72. DOI: 10.7638/kqdlxxb-2018.0056 |
[5] | ZHAI Jian, ZHANG Weiwei, WANG Huanling. Reviews of forebody vortex control method at high angles of attack[J]. ACTA AERODYNAMICA SINICA, 2017, 35(3): 354-367. DOI: 10.7638/kqdlxxb-2017.0018 |
[6] | TIAN Bin, LI Hua-xing, MENG Xuan-shi, LUO Shi-jun, LIU Feng. Flow control of conical forebody with singlepulsed discharge plasma[J]. ACTA AERODYNAMICA SINICA, 2012, 30(5): 680-684. |
[7] | ZHENG Chao-rong, ZHANG Yao-chun. Numerical investigation of the drag-reduction properties of a high-rise building controlled by subsection blowing[J]. ACTA AERODYNAMICA SINICA, 2010, 28(4): 385-392. |
[8] | JIANG Ri-hong, WU Xiao-song. The performance optimization research of the pulse detonation engine's atomizer[J]. ACTA AERODYNAMICA SINICA, 2010, 28(1): 88-93. |
[9] | YANG Ming-zhi, YUAN Xian-xu, XIE Yu-fei, ZHANG Lai-ping, DENG Xiao-gang. Numerical research on the asymmetry mechanism of fore-body vortex and active control[J]. ACTA AERODYNAMICA SINICA, 2009, 27(2): 186-192. |
[10] | Wang Chunyu, Sun Mao. Aerodynamic Properties of Circulation Control Airfoil with Multi-Slot Blowing[J]. ACTA AERODYNAMICA SINICA, 1999, 17(4): 376-381. |
1. |
袁昌运,夏明,高维成,石伟峰,巩文秀,袁豪谦. 鸭翼弦向吹气对BWB飞机气动特性的影响. 西北工业大学学报. 2025(01): 24-30 .
![]() | |
2. |
母雪鹏,陈少松,魏恺,徐一航. 低速状态下鸭式布局导弹的下洗现象. 弹道学报. 2025(01): 68-76 .
![]() | |
3. |
刘沛清,唐文烜,胡天翔. 鸭式布局大迎角大振幅俯仰动态气动特性机理研究进展. 气动研究与试验. 2024(03): 1-18 .
![]() | |
4. |
浦钰文,陈少松,徐一航,魏恺,孙宁. 管式发射双鸭式布局导弹反安定面设计研究. 弹道学报. 2023(02): 76-86 .
![]() | |
5. |
王海峰,展京霞,陈科,陈翔,陈梓钧. 战斗机大迎角气动特性研究技术的发展与应用. 空气动力学学报. 2022(01): 1-25 .
![]() |