LIU Peiqing, YI Yuan. Vortex interaction mechanism and control technology of canard configuration at high angle of attack[J]. ACTA AERODYNAMICA SINICA, 2020, 38(6): 1034-1046. DOI: 10.7638/kqdlxxb-2019.0022
Citation: LIU Peiqing, YI Yuan. Vortex interaction mechanism and control technology of canard configuration at high angle of attack[J]. ACTA AERODYNAMICA SINICA, 2020, 38(6): 1034-1046. DOI: 10.7638/kqdlxxb-2019.0022

Vortex interaction mechanism and control technology of canard configuration at high angle of attack

More Information
  • Received Date: March 03, 2019
  • Revised Date: May 15, 2019
  • Available Online: January 07, 2021
  • The vortex interaction mechanism and control technology of the close-coupled canard configuration at high angles of attack have been reviewed, and the vortex control technology of canard-span wise continuous or pulse blowing have been analyzed and discussed in detail. The results show that the aerodynamic performances could be improved at middle and large angles of attack in canard configuration through the interactions between the canard vortex and the wing vortex. The flow field near the apex of the main wing is affected by the down-wash effect of the canard, in the following downstream development, the co-rotating vortex pair gradually merges into a single stable concentrated vortex by mutual introduction, and finally develops into the concentrated vortex breakdown. Through canard-spanwise blowing, the vortex interactions on the wing might be transformed so the vortex breakdown could be delayed, therefore the maximum lift and stall angle could be further enlarged and the drag force could be reduced. The canard-spanwise pulse blowing can save the blow volume through the hysteresis effect. Either larger duty ratio or higher pulse frequency is conducive to achieve the target lift with a lower bleed air volume. With the same lift increment, the higher the pulse frequency, the smaller the corresponding pulse duty ratio, and the greater the amount of blowing could be saved. For instance, compared with continuous blowing with volume coefficient of 0.25 at 28°, the pulse blowing with volume coefficient of 0.3 could achieve the same lift amplitude under the frequency of 5 Hz and duty cycle of 0.2, which saves the air volume up to 76%.
  • [1]
    GLOSS B B. Effect of wing planform and canard location and geometry on the longitudinal aerodynamic characteristics of a close-coupled canard wing model at subsonic speeds[R]. NASA TN-D-7910, 1975.
    [2]
    GLOSS B B. Effect of canard location and size on canard-wing interference and aerodynamic center shift related to maneuvering aircraft at transonic speeds[R]. NASA TN-D-7505, 1974.
    [3]
    GLOSS B B, KAREN E. Washburn. A study of canard-wing interference using experimental pressure data at transonic speeds[R]. NASA TP-1355, 1979.
    [4]
    GLOSS BB, WASHBURN K E. Load distribution on a close-coupled wing canard at transonic speeds[J]. Journal of Aircraft, 1978, 15(4):234-239. DOI: 10.2514/3.58347
    [5]
    陈名乾.近距耦合鸭式布局动态机动中涡系干扰机理的数值研究[D].北京: 北京航空航天大学, 2014.

    CHEN M Q. Numerical study on the mechanism of dynamic vortex interaction on a maneuvering close-coupled canard configuration[D]. Beijing: Beihang University, 2014. (in Chinese)
    [6]
    DAVARI A R, ASKARI F, SOLTANI M R. canard flow improvement in a splitcanard configuration[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2015, 229(6):1076-1087. DOI: 10.1177/0954410014544180
    [7]
    方宝瑞.飞机气动布局设计[M].北京:航空工业出版社, 1997.
    [8]
    郑遂.鸭式布局先进战斗机研究进展[R].国防科研报告, GF-87282, 1995.
    [9]
    马宝峰, 刘沛清, 邓学蓥.近距耦合鸭式布局气动研究进展[J].空气动力学学报, 2003, 21(3):320-329. doi: 10.3969/j.issn.0258-1825.2003.03.009

    MA B F, LIU P Q, DENG X Y. Research advances on a close-coupled canard wing configuration[J]. Acta Aerodynamica Sinica, 2003, 21(3):320-329.(in Chinese) DOI: 10.3969/j.issn.0258-1825.2003.03.009
    [10]
    HUMMEL D, OELKER H C. Low-speed characteristics for the wing-canard configuration of the international vortex flow experiment[J]. Journal of Aircraft, 1994, 31(4):868-878. DOI: 10.2514/3.46573
    [11]
    OELKER H C, HUMMEL D. Investigations on the vorticity sheets of a close-coupled delta-canard configuration[J]. Journal of Aircraft, 1989, 26(7):657-666. DOI: 10.2514/3.45817
    [12]
    SAMIMI S, DAVARI A R, SOLTANI M R. canard-wing interactions in subsonic flow[J]. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 2013, 37(M2):133. http://www.researchgate.net/publication/290934639_Canard-wing_interactions_in_subsonic_flow
    [13]
    ER-EL J. Effect of wing/canard interference on the loading of a delta wing[J]. Journal of Aircraft, 1988, 25(1):18-24. DOI: 10.2514/3.45535
    [14]
    HOWARD R M, O'LEARY J F.Flowfield study of a close-coupled canard configuration[J]. Journal of Aircraft, 1994, 31(4):908-914. DOI: 10.2514/3.46578
    [15]
    PONTON A, LOWSON M, BARRETT R. The evaluation of canard couplings at high angles of attack[C]//Proc of the 30th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA. Reston, Virigina: AIAA, 1992. DOI: 10.2514/6.1992-281
    [16]
    魏园.近距耦合鸭式布局涡系干扰方式及效果的实验研究[D].北京: 北京航空航天大学, 2004.
    [17]
    温瑞英.近耦合鸭式布局鸭翼展向吹气涡控技术实验研究[D].北京: 北京航空航天大学, 2008.

    WEN R Y. Experimental study on vortex-control technology of canard-spanwise blowing of close-coupled canard wing configurations[D]. Beijing: Beihang University, 2008. (in Chinese)
    [18]
    樊文博.非共面鸭式布局鸭翼涡控制技术实验研究[D].北京: 北京航空航天大学, 2010.

    FAN W B. Experiment study on canard vortex-control technology of non-coplanar canard wing configurations[D]. Beijing: Beihang University, 2010. (in Chinese)
    [19]
    毛磊.鸭式布局大迎角复杂涡系干扰与破裂机理实验研究[D].北京: 北京航空航天大学, 2011.

    MAO L. Experiment study on mechanism of vortex-interaction and vortex breakdown over canard configuration at high angles of attack[D]. Beijing: Beihang University, 2011. (in Chinese)
    [20]
    BERGMANN A, HUMMEL D. Aerodynamic effects of canard position on a wing body configuration in symmetrical flow[C]//Proc of the 39th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA. Reston, Virigina: AIAA, 2001. DOI: 10.2514/6.2001-116
    [21]
    刘沛清, 王亚平, 刘杰, 等.近距耦合鸭式布局复杂涡系的干扰机理[J].北京航空航天大学学报, 2012, 38(7):873-876, 881. doi: 10.13700/j.bh.1001-5965.2012.07.014

    LIU P Q, WANG Y P, LIU J, et al. Vortex interaction mechanism over close-coupled canard configuration[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(7):873-876, 881. (in Chinese) DOI: 10.13700/j.bh.1001-5965.2012.07.014
    [22]
    刘杰.近距耦合鸭式布局鸭翼涡控制数值研究[D].北京: 北京航空航天大学, 2010.

    LIU J. Numerical study of vortex-control technology of the close-coupled canard wing configuration[D]. Beijing: Beihang University, 2010. (in Chinese)
    [23]
    CAMPBELL J F. Effects of spanwise blowing on the pressure field and vortex-lift characteristics of a 44 deg swept trapezoidal wing[R]. NASA TN-D-7907, 1975.
    [24]
    CAMPBELL J F. Augmentation of vortex lift byspanwise blowing[J]. Journal of Aircraft, 1976, 13(9):727-732. DOI: 10.2514/3.58703
    [25]
    CAMPBELL J F, ERICKSON G E. Effects of spanwise blowing on the surface pressure distributions and vortex-lift characteristics of a trapezoidal wing-strake configuration[R]. N79-16803, 1979.
    [26]
    ERICKSON G E. Effect ofspanwise blowing on the aerodynamic characteristics of the F-5E[J]. Journal of Aircraft, 1979, 16(10):695-700. DOI: 10.2514/3.58591
    [27]
    ERICKSON G E, CAMPBELL J F. Flow visualization of vortices locked by spanwise blowing over wings featuring a unique leading-and trailing-edge flap system[R]. NASA TMX-72788, 1975.
    [28]
    DIXON C J. Lift augmention by lateral blowing over a lifting surface[R]. AIAA 69-193, 1969.
    [29]
    CORNISH Ⅲ J J. High lift applications of spanwise blowing[R]. ICAS Paper 70-09, 1970.
    [30]
    DIXON C. Lift and control augmentation byspanwise blowing over trailing edge flaps and control surfaces[C]//Proc of the 4th Aircraft Design, Flight Test, and Operations Meeting, Los Angeles, CA, USA. Reston, Virigina: AIAA, 1972. DOI: 10.2514/6.1972-781
    [31]
    THEISEN J G, SCRUGGS R M, DIXON C J. Theoretical and experimental investigations of vortex lift control byspanwise blowing. volume 2. three-dimensional theory for vortex-lift augmentation[R]. Defense Technical Information Center, 1973. DOI: 10.21236/ad0771304
    [32]
    BRADLEY R G, WRAY W O. A conceptual study of leading-edge-vortex enhancement byblowing[J]. Journal of Aircraft, 1974, 11(1):33-38. DOI: 10.2514/3.60318
    [33]
    BRADLY R G, WRAY W O, SMITH C W. An experimental investigation of leading-edge-vortex augmentation by spanwise[R]. NASA CR-132415, 1974.
    [34]
    HUFFMAN J K, HAHNEF D E, JOHNSON T D Jr. Aerodynamic effects of distributedspanwise blowing on a fighter configuration[J]. Journal of Aircraft, 1987, 24(10):673-679. DOI: 10.2514/3.45506
    [35]
    ERICKSON G E, CAMPBELL J F. Improvement of maneuver aerodynamics by spanwise blowing[R]. NASA TP-1065, 1977.
    [36]
    ERICKSON G, SCHREINER J, ROGERS L. canard-wing vortex interactions at subsonic through supersonic speeds[C]//Proc of the 17th Atmospheric Flight Mechanics Conference, Portland, OR. Reston, Virginia: AIAA, 1990 DOI: 10.2514/6.1990-2814
    [37]
    THEISEN J G, SCRUGGS R M, DIXON C J. Theoretical and experimental investigations of vortex lift control by spanwise blowing. Volume 2: Three-dimensional theory for vortex-lift augmentation[R]. Defense Technical Information Center, 1973. DOI: 10.21236/ad0771304
    [38]
    秦燕华.展向射流与机翼前缘涡相互干扰机理的实验研究[D].北京: 北京航空航天大学, 1993.
    [39]
    WIBOWO, BEKTI S, ROHMAT T A. Water tunnel flow visualization due to canard deflection effect on aircraft to improve stall delay performance[C]//4th International Conference on Science and Technology (ICST). IEEE, 2018.
    [40]
    RE R J, CAPONE F J. Longitudinal aerodynamic characteristics of a fighter model with a close-coupled canard at Mach nmuber from 0.40 to 1.20[R]. NASA TP-1206, 1978.
    [41]
    WEI Z C, ZHAN J X, HE X, et al. Influence of Gurney flaps on aerodynamic characteristics of a canard-configuration aircraft[J]. Aircraft Engineering and Aerospace Technology, 2019, 91(4):700-707. DOI: 10.1108/aeat-08-2017-0181
    [42]
    JENKINS M, MEYER R. A large-scale low-speed tunnel test of a canard configuration with spanwise blowing[C]//Proc of the Aircraft Systems and Technology Meeting, Los Angeles, CA, USA. Reston, Virigina: AIAA, 1975. DOI: 10.2514/6.1975-994
    [43]
    曹硕.非共面鸭式布局鸭翼涡控制技术实验研究[D].北京: 北京航空航天大学, 2010.

    CAO S. Experiment study on canard vortex-control technology of non-coplanar canard wing configurations[D]. Beijing: Beihang University, 2010. (in Chinese)
    [44]
    冯晓伟.鸭翼展向射流间接涡控技术PIV实验研究[D].北京: 北京航空航天大学, 2012.

    FENG X W. PIV experiment study of canard spanwise-blowing indirect vortex control technique[D]. Beijing: Beihang University, 2012. (in Chinese)
    [45]
    杨磊.鸭式布局鸭翼展向吹气间接涡控制机理数值研究[D].北京: 北京航空航天大学, 2011.

    YANG L. Numerical study on indirect-vortex-control technology of canard-spanwise blowing on canard wing configuration[D]. Beijing: Beihang University, 2011. (in Chinese)
  • Related Articles

    [1]JIANG Xin, DU Juntao, SHANG Keming. Influence of tail-blowing control on aerodynamic drag of urban rail trains[J]. ACTA AERODYNAMICA SINICA, 2023, 41(7): 120-129. DOI: 10.7638/kqdlxxb-2022.0113
    [2]CHEN Wenli, GUO Yanjiao. Flow control of circular cylinder based on active suction and blow[J]. ACTA AERODYNAMICA SINICA, 2020, 38(5): 989-995. DOI: 10.7638/kqdlxxb-2020.0005
    [3]JIANG Yubiao, WANG Wanbo, ZHAO Guangyin, LAI Qingren, CHE Binghui. Experimental investigation on blowing control airfoil influenced by ground effect[J]. ACTA AERODYNAMICA SINICA, 2020, 38(5): 887-895. DOI: 10.7638/kqdlxxb-2020.0101
    [4]ZHU Xiaojun, LI Feng, OU Dongbin, ZHOU Kai, LU Zhiliang. Numerical simulation of flow control in lift-increase effect using air-blowing[J]. ACTA AERODYNAMICA SINICA, 2020, 38(1): 66-72. DOI: 10.7638/kqdlxxb-2018.0056
    [5]ZHAI Jian, ZHANG Weiwei, WANG Huanling. Reviews of forebody vortex control method at high angles of attack[J]. ACTA AERODYNAMICA SINICA, 2017, 35(3): 354-367. DOI: 10.7638/kqdlxxb-2017.0018
    [6]TIAN Bin, LI Hua-xing, MENG Xuan-shi, LUO Shi-jun, LIU Feng. Flow control of conical forebody with singlepulsed discharge plasma[J]. ACTA AERODYNAMICA SINICA, 2012, 30(5): 680-684.
    [7]ZHENG Chao-rong, ZHANG Yao-chun. Numerical investigation of the drag-reduction properties of a high-rise building controlled by subsection blowing[J]. ACTA AERODYNAMICA SINICA, 2010, 28(4): 385-392.
    [8]JIANG Ri-hong, WU Xiao-song. The performance optimization research of the pulse detonation engine's atomizer[J]. ACTA AERODYNAMICA SINICA, 2010, 28(1): 88-93.
    [9]YANG Ming-zhi, YUAN Xian-xu, XIE Yu-fei, ZHANG Lai-ping, DENG Xiao-gang. Numerical research on the asymmetry mechanism of fore-body vortex and active control[J]. ACTA AERODYNAMICA SINICA, 2009, 27(2): 186-192.
    [10]Wang Chunyu, Sun Mao. Aerodynamic Properties of Circulation Control Airfoil with Multi-Slot Blowing[J]. ACTA AERODYNAMICA SINICA, 1999, 17(4): 376-381.
  • Cited by

    Periodical cited type(5)

    1. 袁昌运,夏明,高维成,石伟峰,巩文秀,袁豪谦. 鸭翼弦向吹气对BWB飞机气动特性的影响. 西北工业大学学报. 2025(01): 24-30 .
    2. 母雪鹏,陈少松,魏恺,徐一航. 低速状态下鸭式布局导弹的下洗现象. 弹道学报. 2025(01): 68-76 .
    3. 刘沛清,唐文烜,胡天翔. 鸭式布局大迎角大振幅俯仰动态气动特性机理研究进展. 气动研究与试验. 2024(03): 1-18 .
    4. 浦钰文,陈少松,徐一航,魏恺,孙宁. 管式发射双鸭式布局导弹反安定面设计研究. 弹道学报. 2023(02): 76-86 .
    5. 王海峰,展京霞,陈科,陈翔,陈梓钧. 战斗机大迎角气动特性研究技术的发展与应用. 空气动力学学报. 2022(01): 1-25 . 本站查看

    Other cited types(0)

Catalog

    Article views (215) PDF downloads (152) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return