Citation: | WANG Yufei, LIU Yuanqing, WANG Jingzhu, WANG Yiwei, HUANG Chenguang. Interfacial evolution of a two-dimensional elliptical bubble induced by underwater pressure wave[J]. ACTA AERODYNAMICA SINICA, 2020, 38(4): 820-827. DOI: 10.7638/kqdlxxb-2020.0069 |
[1] |
DinG Z, GRACEWSKI S M. The behavior of a gas cavity impacted by a weak or strong shock wave[J]. Journal of Fluid Mechanics, 1996, 309:183-209. doi: 10.1017/S0022112096001607
|
[2] |
ABE A, WANG J, SHIODA M, et al. Observation and analysis of interaction phenomena between microbubbles and underwater shock wave[J]. Journal of Visualization, 2015, 18:437-447. doi: 10.1007/s12650-014-0257-7
|
[3] |
DEAR J P, FIELD J E, WALTON A J. Gas compression and jet formation in cavities collapsed by a shock wave[J]. Nature, 1988, 332(6164):505-508. doi: 10.1038/332505a0
|
[4] |
DEAR J P, FIELD J E. A study of the collapse of arrays of cavities[J]. Journal of Fluid Mechanics, 1988, 190:409-425. doi: 10.1017/S0022112088001387
|
[5] |
BOURNE N K, FIELD J E. Shock-induced collapse of single cavities in liquids[J]. Journal of Fluid Mechanics, 1992, 244:225-240. doi: 10.1017/S0022112092003045
|
[6] |
BOURNE N K, FIELD J E. Shock-induced collapse and luminescence by cavities[J]. Philosophical Transactions Mathematical Physical & Engineering Sciences, 1999, 357:295-311. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=70177ee8a45a1edbbdcc995afa66e7c1
|
[7] |
APAZIDIS A. Numerical investigation of shock induced bubble collapse in water[J]. Physics of Fluids, 2016, 28:046101. doi: 10.1063/1.4944903
|
[8] |
WANG Z, YU B, CHEN H, et al. Scaling vortex breakdown mechansim based on viscous effect in shock cylindrical bubble interaction[J]. Physics of Fluids, 2018, 30:126103. doi: 10.1063/1.5051463
|
[9] |
HAWKER N A, VENTIKOS Y. Interaction of a strong shock wave with a gas bubble in a liquid medium:a numerical study[J]. Journal of Fluid Mechanics, 2012, 701:59-97. doi: 10.1017/jfm.2012.132
|
[10] |
NOURGALIEV R R, SUSHCHIKH S Y, DINH T N, et al. Shock wave refraction patterns at interfaces[J]. International Journal of Multiphase Flow, 2005, 31:969-995. doi: 10.1016/j.ijmultiphaseflow.2005.04.001
|
[11] |
JOHNSEN E, COLONIUS T. Shock-induced collapse of a gas bubble in shockwave lithotripsy[J]. Journal of the Acoustical Society of America, 2011, 124(4):2011-2020. http://onlinelibrary.wiley.com/resolve/reference/PMED?id=19062841
|
[12] |
GONCALVES E, HOARAU Y, ZEIDAN D. Simulation of shock-induced bubble collapse using a four-equation model[J]. Shock Waves, 2019, 29:221-234. doi: 10.1007/s00193-018-0809-1
|
[13] |
BALL G J, HOWELL B P, LEIGHTON T G, et al. Shock-induced collapse of a cylindrical air cavity in water:a Free-Lagrange simulation[J]. Shock Waves, 2010, 10:265-276. https://eprints.soton.ac.uk/21322/
|
[14] |
李帅兵, 司廷.射流破碎的线性不稳定性分析方法[J].空气动力学学报, 2019, 37(3):356-372. doi: 10.7638/kqdlxxb-2018.0153
LI S B, SI T. Advances on linear instability analysis method of jet breakup[J]. Acta Aerodynamica Sinica, 2019, 37(3):356-372. doi: 10.7638/kqdlxxb-2018.0153
|
[15] |
杨玟, 王丽丽, 张树道, 等.用湍流模型研究Richtmyer-Meshkov不稳定性诱导的湍流混合[J].空气动力学学报, 2010, 28(1):119-123. doi: 10.3969/j.issn.0258-1825.2010.01.020
YANG W, WANG L L, ZHANG S D, et al. The study of turbulent mixing induced by Richtmyer-Meshkov instability using turbulence model[J]. Acta Aerodynamica Sinica, 2010, 28(1):119-123. doi: 10.3969/j.issn.0258-1825.2010.01.020
|
[16] |
RANJAN D, OAKLEY J, BONAZZA R. Shock-bubble interaction[J]. Annual Review of Fluid Mechanics, 2011, 43:117-140. doi: 10.1146/annurev-fluid-122109-160744
|
[17] |
BOURNE N K, FIELD J E. Shock-induced collapseand luminescence by cavities[J]. Philosophical Transactions of the Royal Society A, 1999, 357:295-311. doi: 10.1098/rsta.1999.0328
|
[18] |
张阿漫, 倪宝玉, 朱枫, 等.冲击波作用下气泡动态响应数值研究[J].中国造船, 2010, 51(3):19-29. doi: 10.3969/j.issn.1000-4882.2010.03.003
ZHANG A M, NI B Y, ZHU F, et al. Dynamic response of a bubble to an impinging shock wave[J]. Shipbuilding of China, 2010, 51(3):19-29. doi: 10.3969/j.issn.1000-4882.2010.03.003
|
[1] | XIANG Yang, WU Yiming, CHEN Xuanyu, CHENG Zepeng, LIU Hong. Review of wingtip vortex instability and its modal characteristics of large civil aircraft[J]. ACTA AERODYNAMICA SINICA, 2025, 43(1): 62-94. DOI: 10.7638/kqdlxxb-2023.0126 |
[2] | XIE Hansong, XIAO Mengjuan, ZHANG Yousheng. A new idea for the unified RANS predictions of turbulent mixing induced by interfacial instabilities[J]. ACTA AERODYNAMICA SINICA, 2024, 42(9): 1-13. DOI: 10.7638/kqdlxxb-2024.0021 |
[3] | CHEN Lu, LAI Huilin, LIN Chuandong, LI Demei. Numerical study of multimode Rayleigh-Taylor instability by using the discrete Boltzmann method[J]. ACTA AERODYNAMICA SINICA, 2022, 40(3): 140-150. DOI: 10.7638/kqdlxxb-2021.0345 |
[4] | QU Ling, GUO Shuangxi, LU Yuanzheng, CEN Xianrong, HUANG Pengqi, ZHOU Shengqi. Convective instability in the bottom of Northern South China Sea[J]. ACTA AERODYNAMICA SINICA, 2022, 40(2): 199-207. DOI: 10.7638/kqdlxxb-2021.0410 |
[5] | WANG Honghui, DING Juchun, SI Ting, LUO Xisheng. Richtmyer-Meshkov instability of a single-mode interface with reshock[J]. ACTA AERODYNAMICA SINICA, 2022, 40(1): 33-40. DOI: 10.7638/kqdlxxb-2021.0153 |
[6] | LI Shuaibing, SI Ting. Advances on linear instability analysis method of jet breakup[J]. ACTA AERODYNAMICA SINICA, 2019, 37(3): 356-372. DOI: 10.7638/kqdlxxb-2018.0153 |
[7] | WAN Bingbing, LUO Jisheng. Entropy-layer instability over a blunt plate in supersonic flow[J]. ACTA AERODYNAMICA SINICA, 2018, 36(2): 247-253. DOI: 10.7638/kqdlxxb-2018.0029 |
[8] | ZUO Sui-han, YANG Yong, LI Dong, LI Yue-li. Experimental investigation of cross-flow instability in swept-wing boundary layers[J]. ACTA AERODYNAMICA SINICA, 2010, 28(5): 495-502. |
[9] | YANG Min, WANG Li-li, ZHANG Shu-dao, HE Chang-jiang, HANG Yi-hong. The study of turbulent mixing induced by Richtmyer-Meshkov instability using turbulence model[J]. ACTA AERODYNAMICA SINICA, 2010, 28(1): 119-123. |
[10] | Wu Yongjian, Ming Xiao. Experimental Study of Initial Disturbance Growth for Cross Flow Instability[J]. ACTA AERODYNAMICA SINICA, 2000, 18(1): 62-67. |
1. |
程淑杰,梁争峰,阮喜军,苗润源,蒙佳宇,武海军. 浅水爆炸冲击波特性及其毁伤效应研究进展. 火炸药学报. 2024(01): 17-28 .
![]() | |
2. |
王广航,王静竹,杜岩,王志英,王一伟. 近自由面通气空泡诱导的飞溅水层闭合行为数值模拟. 空气动力学学报. 2024(01): 113-122 .
![]() | |
3. |
乔兴伟,孙纪国,刘倩. 氢氧同轴离心式喷嘴自激振荡数值研究. 推进技术. 2022(12): 200-211 .
![]() |