WANG Yufei, LIU Yuanqing, WANG Jingzhu, WANG Yiwei, HUANG Chenguang. Interfacial evolution of a two-dimensional elliptical bubble induced by underwater pressure wave[J]. ACTA AERODYNAMICA SINICA, 2020, 38(4): 820-827. DOI: 10.7638/kqdlxxb-2020.0069
Citation: WANG Yufei, LIU Yuanqing, WANG Jingzhu, WANG Yiwei, HUANG Chenguang. Interfacial evolution of a two-dimensional elliptical bubble induced by underwater pressure wave[J]. ACTA AERODYNAMICA SINICA, 2020, 38(4): 820-827. DOI: 10.7638/kqdlxxb-2020.0069

Interfacial evolution of a two-dimensional elliptical bubble induced by underwater pressure wave

More Information
  • Received Date: March 29, 2020
  • Revised Date: April 29, 2020
  • Available Online: January 07, 2021
  • The interaction between underwater pressure wave and bubble is the key to solve the problem of the collapse of bubble cloud. Jet generation is the most significant feature of non-spherical collapse induced by pressure wave. In the present study, we analyze numerically the interfacical evolution of 2D elliptical bubble induced by underwater pressure wave. The results of numerical simulation show that inclinination angle of bubble is dependent on jet direaction, and not on its generation position. Here the inclinination angle is defined as the angle between long axis of elliptical bubble and propagation direction of pressure wave. For inclination angle = 0°, two jets with opposite directions are generated in long axis, and finally the jet pointing towards the propagation of pressure wave plays a dominant role. For inclination angle = 90°, two genenrated jets are symmetrical in the short axis, and the angle between them and the direction of pressure wave is 53.9 °. By analyzing the equation of voricity, it is revealed that the baroclinity is the main mechanism of jet formation, which caused by the mismatch between pressure gradient and density incoherence at the interface. By changing the angle of elliptical bubble, we obtain the phase diagram between inclination angle and jet angle.
  • [1]
    DinG Z, GRACEWSKI S M. The behavior of a gas cavity impacted by a weak or strong shock wave[J]. Journal of Fluid Mechanics, 1996, 309:183-209. doi: 10.1017/S0022112096001607
    [2]
    ABE A, WANG J, SHIODA M, et al. Observation and analysis of interaction phenomena between microbubbles and underwater shock wave[J]. Journal of Visualization, 2015, 18:437-447. doi: 10.1007/s12650-014-0257-7
    [3]
    DEAR J P, FIELD J E, WALTON A J. Gas compression and jet formation in cavities collapsed by a shock wave[J]. Nature, 1988, 332(6164):505-508. doi: 10.1038/332505a0
    [4]
    DEAR J P, FIELD J E. A study of the collapse of arrays of cavities[J]. Journal of Fluid Mechanics, 1988, 190:409-425. doi: 10.1017/S0022112088001387
    [5]
    BOURNE N K, FIELD J E. Shock-induced collapse of single cavities in liquids[J]. Journal of Fluid Mechanics, 1992, 244:225-240. doi: 10.1017/S0022112092003045
    [6]
    BOURNE N K, FIELD J E. Shock-induced collapse and luminescence by cavities[J]. Philosophical Transactions Mathematical Physical & Engineering Sciences, 1999, 357:295-311. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=70177ee8a45a1edbbdcc995afa66e7c1
    [7]
    APAZIDIS A. Numerical investigation of shock induced bubble collapse in water[J]. Physics of Fluids, 2016, 28:046101. doi: 10.1063/1.4944903
    [8]
    WANG Z, YU B, CHEN H, et al. Scaling vortex breakdown mechansim based on viscous effect in shock cylindrical bubble interaction[J]. Physics of Fluids, 2018, 30:126103. doi: 10.1063/1.5051463
    [9]
    HAWKER N A, VENTIKOS Y. Interaction of a strong shock wave with a gas bubble in a liquid medium:a numerical study[J]. Journal of Fluid Mechanics, 2012, 701:59-97. doi: 10.1017/jfm.2012.132
    [10]
    NOURGALIEV R R, SUSHCHIKH S Y, DINH T N, et al. Shock wave refraction patterns at interfaces[J]. International Journal of Multiphase Flow, 2005, 31:969-995. doi: 10.1016/j.ijmultiphaseflow.2005.04.001
    [11]
    JOHNSEN E, COLONIUS T. Shock-induced collapse of a gas bubble in shockwave lithotripsy[J]. Journal of the Acoustical Society of America, 2011, 124(4):2011-2020. http://onlinelibrary.wiley.com/resolve/reference/PMED?id=19062841
    [12]
    GONCALVES E, HOARAU Y, ZEIDAN D. Simulation of shock-induced bubble collapse using a four-equation model[J]. Shock Waves, 2019, 29:221-234. doi: 10.1007/s00193-018-0809-1
    [13]
    BALL G J, HOWELL B P, LEIGHTON T G, et al. Shock-induced collapse of a cylindrical air cavity in water:a Free-Lagrange simulation[J]. Shock Waves, 2010, 10:265-276. https://eprints.soton.ac.uk/21322/
    [14]
    李帅兵, 司廷.射流破碎的线性不稳定性分析方法[J].空气动力学学报, 2019, 37(3):356-372. doi: 10.7638/kqdlxxb-2018.0153

    LI S B, SI T. Advances on linear instability analysis method of jet breakup[J]. Acta Aerodynamica Sinica, 2019, 37(3):356-372. doi: 10.7638/kqdlxxb-2018.0153
    [15]
    杨玟, 王丽丽, 张树道, 等.用湍流模型研究Richtmyer-Meshkov不稳定性诱导的湍流混合[J].空气动力学学报, 2010, 28(1):119-123. doi: 10.3969/j.issn.0258-1825.2010.01.020

    YANG W, WANG L L, ZHANG S D, et al. The study of turbulent mixing induced by Richtmyer-Meshkov instability using turbulence model[J]. Acta Aerodynamica Sinica, 2010, 28(1):119-123. doi: 10.3969/j.issn.0258-1825.2010.01.020
    [16]
    RANJAN D, OAKLEY J, BONAZZA R. Shock-bubble interaction[J]. Annual Review of Fluid Mechanics, 2011, 43:117-140. doi: 10.1146/annurev-fluid-122109-160744
    [17]
    BOURNE N K, FIELD J E. Shock-induced collapseand luminescence by cavities[J]. Philosophical Transactions of the Royal Society A, 1999, 357:295-311. doi: 10.1098/rsta.1999.0328
    [18]
    张阿漫, 倪宝玉, 朱枫, 等.冲击波作用下气泡动态响应数值研究[J].中国造船, 2010, 51(3):19-29. doi: 10.3969/j.issn.1000-4882.2010.03.003

    ZHANG A M, NI B Y, ZHU F, et al. Dynamic response of a bubble to an impinging shock wave[J]. Shipbuilding of China, 2010, 51(3):19-29. doi: 10.3969/j.issn.1000-4882.2010.03.003
  • Related Articles

    [1]XIANG Yang, WU Yiming, CHEN Xuanyu, CHENG Zepeng, LIU Hong. Review of wingtip vortex instability and its modal characteristics of large civil aircraft[J]. ACTA AERODYNAMICA SINICA, 2025, 43(1): 62-94. DOI: 10.7638/kqdlxxb-2023.0126
    [2]XIE Hansong, XIAO Mengjuan, ZHANG Yousheng. A new idea for the unified RANS predictions of turbulent mixing induced by interfacial instabilities[J]. ACTA AERODYNAMICA SINICA, 2024, 42(9): 1-13. DOI: 10.7638/kqdlxxb-2024.0021
    [3]CHEN Lu, LAI Huilin, LIN Chuandong, LI Demei. Numerical study of multimode Rayleigh-Taylor instability by using the discrete Boltzmann method[J]. ACTA AERODYNAMICA SINICA, 2022, 40(3): 140-150. DOI: 10.7638/kqdlxxb-2021.0345
    [4]QU Ling, GUO Shuangxi, LU Yuanzheng, CEN Xianrong, HUANG Pengqi, ZHOU Shengqi. Convective instability in the bottom of Northern South China Sea[J]. ACTA AERODYNAMICA SINICA, 2022, 40(2): 199-207. DOI: 10.7638/kqdlxxb-2021.0410
    [5]WANG Honghui, DING Juchun, SI Ting, LUO Xisheng. Richtmyer-Meshkov instability of a single-mode interface with reshock[J]. ACTA AERODYNAMICA SINICA, 2022, 40(1): 33-40. DOI: 10.7638/kqdlxxb-2021.0153
    [6]LI Shuaibing, SI Ting. Advances on linear instability analysis method of jet breakup[J]. ACTA AERODYNAMICA SINICA, 2019, 37(3): 356-372. DOI: 10.7638/kqdlxxb-2018.0153
    [7]WAN Bingbing, LUO Jisheng. Entropy-layer instability over a blunt plate in supersonic flow[J]. ACTA AERODYNAMICA SINICA, 2018, 36(2): 247-253. DOI: 10.7638/kqdlxxb-2018.0029
    [8]ZUO Sui-han, YANG Yong, LI Dong, LI Yue-li. Experimental investigation of cross-flow instability in swept-wing boundary layers[J]. ACTA AERODYNAMICA SINICA, 2010, 28(5): 495-502.
    [9]YANG Min, WANG Li-li, ZHANG Shu-dao, HE Chang-jiang, HANG Yi-hong. The study of turbulent mixing induced by Richtmyer-Meshkov instability using turbulence model[J]. ACTA AERODYNAMICA SINICA, 2010, 28(1): 119-123.
    [10]Wu Yongjian, Ming Xiao. Experimental Study of Initial Disturbance Growth for Cross Flow Instability[J]. ACTA AERODYNAMICA SINICA, 2000, 18(1): 62-67.
  • Cited by

    Periodical cited type(3)

    1. 程淑杰,梁争峰,阮喜军,苗润源,蒙佳宇,武海军. 浅水爆炸冲击波特性及其毁伤效应研究进展. 火炸药学报. 2024(01): 17-28 .
    2. 王广航,王静竹,杜岩,王志英,王一伟. 近自由面通气空泡诱导的飞溅水层闭合行为数值模拟. 空气动力学学报. 2024(01): 113-122 . 本站查看
    3. 乔兴伟,孙纪国,刘倩. 氢氧同轴离心式喷嘴自激振荡数值研究. 推进技术. 2022(12): 200-211 .

    Other cited types(2)

Catalog

    Article views (197) PDF downloads (106) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return