WANG Z C, ZHOU X X, MA B B, et al. Spreading characteristic and purification effect of air pollutants in passenger cabin of a high-speed train[J]. Acta Aerodynamica Sinica, 2022, 40(2): 138−145. DOI: 10.7638/kqdlxxb-2021.0107
Citation: WANG Z C, ZHOU X X, MA B B, et al. Spreading characteristic and purification effect of air pollutants in passenger cabin of a high-speed train[J]. Acta Aerodynamica Sinica, 2022, 40(2): 138−145. DOI: 10.7638/kqdlxxb-2021.0107

Spreading characteristic and purification effect of air pollutants in passenger cabin of a high-speed train

More Information
  • Received Date: June 20, 2021
  • Revised Date: July 17, 2021
  • Accepted Date: July 28, 2021
  • Available Online: November 30, 2021
  • The passenger cabin of a high-speed train is relatively well-sealed. Thus the spreading characteristic of air pollutants within the cabin may vary significantly under operation due to the influence of different ventilation modes as well as the cabin layout structure. The present work conducted a systematic experimental study on the air pollutant spreading characteristic in the passenger cabin of a real high-speed train with a complete air condition system, wind passage structures and cabin decorations. The results indicate that, the air pollutants emerged in the middle of the passenger cabin can spread to both ends of the cabin, resulting in the increase of pollutant concentration to different levels at different locations. Particularly, the downstream can reach the highest pollutant concentration. The top air supply mode works better in restricting the air pollutant spreading than the bottom air supply mode. Two air purification techniques, i.e., intense field dielectric (IFD) and dielectric barrier discharge (DBD), can significantly increase the purification effect of air pollutants, and the effectiveness of air purification is positively correlated with the air pollutant concentration. Moreover, the IFD technique exhibits a better purification efficiency than that of the DBD technique.
  • [1]
    ZIMMERMAN R S. Indoor air quality guidelines for Pennsylvania schools[R/OL]. 1999, 5: 2−17. https://www.docin.com/p-1641068665.html
    [2]
    HO A F W, ZHENG H L, EARNEST A, et al. Time-stratified case crossover study of the association of outdoor ambient air pollution with the risk of acute myocardial infarction in the context of seasonal exposure to the Southeast Asian haze problem[J]. Journal of the American Heart Association, 2019, 8(6): e011272. DOI: 10.1161/jaha.118.011272
    [3]
    JAYARAJ R L, RODRIGUEZ E A, WANG Y, et al. Outdoor ambient air pollution and neurodegenerative diseases: the neuroinflammation hypothesis[J]. Current Environmental Health Reports, 2017, 4(2): 166-179. DOI: 10.1007/s40572-017-0142-3
    [4]
    赵传阳, 李永安, 刘学来. 粉尘PM2.5及其对人体的危害[J]. 制冷与空调(四川), 2013, 27(4): 403-406, 419

    ZHAO C Y, LI Y A, LIU X L. PM2.5 and its impact on the health hazards[J]. Refrigeration & Air Conditioning, 2013, 27(4): 403-406, 419. (in Chinese)
    [5]
    肖春华. 面对面呼吸飞沫传播和防护的流体力学初步分析[J]. 空气动力学学报, 2021, 39(02): 133-141

    XIAO C H. Preliminary fluid dynamics analysis on face-to-face respiratory droplets transmission and protection[J]. Acta Aerodynamica Sinica, 2021, 39(02): 133-141. (in Chinese)
    [6]
    LIU W, MAZUMDAR S, ZHANG Z, et al. State-of-the-art methods for studying air distributions in commercial airliner cabins[J]. Building and Environment, 2012, 47: 5-12. DOI: 10.1016/j.buildenv.2011.07.005
    [7]
    MAO Y Y, WANG J, LI J M. Experimental and numerical study of air flow and temperature variations in an electric vehicle cabin during cooling and heating[J]. Applied Thermal Engineering, 2018, 137: 356-367. DOI: 10.1016/j.applthermaleng.2018.03.099
    [8]
    TAO Y, YANG M Z, QIAN B S, et al. Numerical and experimental study on ventilation panel models in a subway passenger compartment[J]. Engineering, 2019, 5(2): 329-336. DOI: 10.1016/j.eng.2018.12.007
    [9]
    LIN C H, HORSTMAN R H, ABLERS M F, et al. Numerical simulation of airflow and airborne pathogen transport in aircraft cabins - Part II: Numerical simulation of airborne pathogen transport[J]. Ashrae Transactions, 2005, 111(Pt1): 755-763.
    [10]
    LI Z Y, CHE W W, FREY H C, et al. Factors affecting variability in PM2.5 exposure concentrations in a metro system[J]. Environmental Research, 2018, 160: 20-26. DOI: 10.1016/j.envres.2017.09.006
    [11]
    WALGAMA C, FACKRELL S, KARIMI M, et al. Passenger thermal comfort in vehicles - A review[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2006, 220(5): 543-562. DOI: 10.1243/09544070d00705
    [12]
    MAIER J L, MARGGRAF-MICHEEL C, ZINN F, et al. Ceiling-based cabin displacement ventilation in an aircraft passenger cabin: Analysis of thermal comfort[J]. Building and Environment, 2018, 146: 29-36. DOI: 10.1016/j.buildenv.2018.09.031
    [13]
    ELMAGHRABY H A, CHIANG Y W, ALIABADI A A. Ventilation strategies and air quality management in passenger aircraft cabins: a review of experimental approaches and numerical simulations[J]. Science and Technology for the Built Environment, 2018, 24(2): 160-175. DOI: 10.1080/23744731.2017.1387463
    [14]
    翟萌, 姜惠芬. 新冠病毒肺炎COVID-19的传播途径及预防和防护[J]. 基因组学与应用生物学, 2020, 39(10): 4895-4898

    ZHAI M, JIANG H F. Transmission route, prevention and protection of COVID-19 caused by SARS-CoV-2[J]. Genomics and Applied Biology, 2020, 39(10): 4895-4898. (in Chinese)
    [15]
    BORRO L, MAZZEI L, RAPONI M, et al. The role of air conditioning in the diffusion of Sars-CoV-2 in indoor environments: a first computational fluid dynamic model, based on investigations performed at the Vatican State Children's hospital[J]. Environmental Research, 2021, 193: 110343. DOI: 10.1016/j.envres.2020.110343
    [16]
    闫新, 杨秀琴, 张利军. 空气净化器用过滤材料透析[J]. 洁净与空调技术, 2015(4): 82-85 doi: 10.3969/j.issn.1005-3298.2015.04.022

    YAN X, YANG X Q, ZHANG L J. Dialyse the filter material of air cleaner[J]. Contamination Control & Air-Conditioning Technology, 2015(4): 82-85. (in Chinese) doi: 10.3969/j.issn.1005-3298.2015.04.022
    [17]
    刘俊杰. 高效纤维滤料最易透过粒径计数效率的研究[D]. 天津: 天津大学, 2007.

    LIU J J. Study on the particle count efficiency at the most penetrating particle size for high efficiency fibrous filter media[D]. Tianjin: Tianjin University, 2007(in Chinese).
    [18]
    王晓斌, 杜雅兰, 王东黎. 重雾霾天气条件下高铁客运系统细颗粒物及净化技术调查[J]. 铁路节能环保与安全卫生, 2017, 7(2): 92-95

    WANG X B, DU Y L, WANG D L. Investigation and purification technology of fine particulate matter in high-speed railway passenger transport system[J]. Railway Energy Saving & Environmental Protection & Occupational Safety and Health, 2017, 7(2): 92-95. (in Chinese)
    [19]
    黄修涛. 阵列式介质阻挡放电处理空气颗粒物(PM)的研究[D]. 武汉: 华中科技大学, 2017.

    HUANG X T. Investigation on degradation of particulate matter (PM) by array dielectric barrier discharge[D]. Wuhan: Huazhong University of Science and Technology, 2017 (in Chinese).
    [20]
    艾庆文. 室内静电净化装置的设计与性能研究[D]. 上海: 东华大学, 2005.

    AI Q W. Development of indoor air cleaner and research on its performance[D]. Shanghai: Donghua University, 2005 (in Chinese).
  • Related Articles

    [1]WANG Ruidong, NI Zhangsong, ZHANG Jun, LI Shuming, YUE Huaijun, YU Yucheng. Optimization design of tandem airfoils on high-speed train[J]. ACTA AERODYNAMICA SINICA, 2022, 40(2): 129-137. DOI: 10.7638/kqdlxxb-2021.0203
    [2]SHENG Xugao, YU Mengge, LIU Jiali. Analysis of rain load and aerodynamic characteristics of high-speed train under heavy rainfall environment based on M-P raindrop size distribution[J]. ACTA AERODYNAMICA SINICA, 2022, 40(2): 122-128. DOI: 10.7638/kqdlxxb-2021.0245
    [3]GUO Ting, XIA Chao, CHU Shijun, YANG Zhigang. Impact of different bogie configuations on slipstream and unsteady wake of a high-speed train[J]. ACTA AERODYNAMICA SINICA, 2022, 40(2): 94-104. DOI: 10.7638/kqdlxxb-2021.0239
    [4]ZHOU Peng, ZHANG Jun, LI Tian, ZHANG Jiye. Effect of initial ambient temperature on aerodynamic characteristics of high-speed train in an evacuated tube[J]. ACTA AERODYNAMICA SINICA, 2021, 39(5): 181-190. DOI: 10.7638/kqdlxxb-2021.0161
    [5]HE Xuhui, JI Xiaoyu, JING Haiquan, GE Huikai, ZHANG Jiazhen. Numerical simulations of the pressure waves and micro pressure waves generated by a high-speed train passing through an enclosed sound barrier[J]. ACTA AERODYNAMICA SINICA, 2021, 39(5): 142-150. DOI: 10.7638/kqdlxxb-2020.0037
    [6]WANG Yeteng, SUN Zhenxu, JU Shengjun, WANG Mengying, YANG Guowei. Influence of groove microstructures on the aerodynamic performance of high speed trains under crosswind[J]. ACTA AERODYNAMICA SINICA, 2021, 39(5): 132-141. DOI: 10.7638/kqdlxxb-2021.0149
    [7]CHEN Yu, LIU Jianan, YANG Zhigang, MAO Mao, WANG Yigang. Wind tunnel experiment of aerodynamic noise in bogie section of high-speed trains[J]. ACTA AERODYNAMICA SINICA, 2021, 39(5): 111-119. DOI: 10.7638/kqdlxxb-2021.0173
    [8]XU Jianlin, LI Shuaidong, ZHAO Gaopeng, JIA Yongxing, LI Rui, YANG Yonggang. Influence of windbreak distance on the aerodynamic performance of high-speed trains by Large Eddy Simulation[J]. ACTA AERODYNAMICA SINICA. DOI: 10.7638/kqdlxxb-2024.0108
    [9]Mei Yuangui, Zhang Chengyu, Xu Jianlin, Li Shi'an, Hao Lei. Numerical research on basic characteristics of tunnel entry waves induced by a high-speed train running into the tunnel[J]. ACTA AERODYNAMICA SINICA, 2015, 33(5): 686-696. DOI: 10.7638/kqdlxxb-2013.0082
    [10]Numerical simulation of aerodynamic noise and noise reduction of high-speed train connection section[J]. ACTA AERODYNAMICA SINICA, 2012, 30(2): 254-259.

Catalog

    Article views (262) PDF downloads (31) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return