Citation: | GUO T, XIA C, CHU S J, et al. Impact of different bogie configuations on slipstream and unsteady wake of a high-speed train[J]. Acta Aerodynamica Sinica, 2022, 40(2): 94−104. DOI: 10.7638/kqdlxxb-2021.0239 |
[1] |
杨国伟, 魏宇杰, 赵桂林, 等. 高速列车的关键力学问题[J]. 力学进展, 2015, 45(1): 217-460. doi: 10.6052/1000-0992-13-091
YANG G W, WEI Y J, ZHAO G L, et al. Research progress on the mechanics of high speed rails[J]. Advances in Mechanics, 2015, 45(1): 217-460. (in Chinese) doi: 10.6052/1000-0992-13-091
|
[2] |
SUZUKI M, NAKADE K, IDO A. Countermeasures for reducing unsteady aerodynamic force acting on high-speed train in tunnel by use of modifications of train shapes[J]. Journal of Mechanical Systems for Transportation and Logistics, 2009, 2(1): 1-12. DOI: 10.1299/jmtl.2.1
|
[3] |
BAKER C J, QUINN A, SIMA M, et al. Full-scale measurement and analysis of train slipstreams and wakes. Part 1: Ensemble averages[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2014, 228(5): 451-467. DOI: 10.1177/0954409713485944
|
[4] |
BAKER C J, DALLEY S J, JOHNSON T, et al. The slipstream and wake of a high-speed train[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2001, 215(2): 83-99. DOI: 10.1243/0954409011531422
|
[5] |
STERLING M, BAKER C J, JORDAN S C, et al. A study of the slipstreams of high-speed passenger trains and freight trains[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2008, 222(2): 177-193. DOI: 10.1243/09544097jrrt133
|
[6] |
BELL J R, BURTON D, THOMPSON M C, et al. Moving model analysis of the slipstream and wake of a high-speed train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 136: 127-137. DOI: 10.1016/j.jweia.2014.09.007
|
[7] |
XIA C, WANG H F, SHAN X Z, et al. Effects of ground configurations on the slipstream and near wake of a high-speed train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 168: 177-189. DOI: 10.1016/j.jweia.2017.06.005
|
[8] |
BELL J R, BURTON D, THOMPSON M C, et al. Dynamics of trailing vortices in the wake of a generic high-speed train[J]. Journal of Fluids and Structures, 2016, 65: 238-256. DOI: 10.1016/j.jfluidstructs.2016.06.003
|
[9] |
BELL J R, BURTON D, THOMPSON M C, et al. Flow topology and unsteady features of the wake of a generic high-speed train[J]. Journal of Fluids and Structures, 2016, 61: 168-183. DOI: 10.1016/j.jfluidstructs.2015.11.009
|
[10] |
XIA C, WANG H F, BAO D, et al. Unsteady flow structures in the wake of a high-speed train[J]. Experimental Thermal and Fluid Science, 2018, 98: 381-396. DOI: 10.1016/j.expthermflusci.2018.06.010
|
[11] |
WANG S B, BURTON D, HERBST A, et al. The effect of bogies on high-speed train slipstream and wake[J]. Journal of Fluids and Structures, 2018, 83: 471-489. DOI: 10.1016/j.jfluidstructs.2018.03.013
|
[12] |
DONG T Y, LIANG X F, KRAJNOVIĆ S, et al. Effects of simplifying train bogies on surrounding flow and aerodynamic forces[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 191: 170-182. DOI: 10.1016/j.jweia.2019.06.006
|
[13] |
LIU W, GUO D L, ZHANG Z J, et al. Effects of bogies on the wake flow of a high-speed train[J]. Applied Sciences, 2019, 9(4): 759. DOI: 10.3390/app9040759
|
[14] |
ROWLEY C W, DAWSON S T M. Model reduction for flow analysis and control[J]. Annual Review of Fluid Mechanics, 2017, 49(1): 387-417. DOI: 10.1146/annurev-fluid-010816-060042
|
[15] |
TAIRA K, BRUNTON S L, DAWSON S T M, et al. Modal analysis of fluid flows: an overview[J]. AIAA Journal, 2017, 55(12): 4013-4041. DOI: 10.2514/1.J056060
|
[16] |
寇家庆, 张伟伟. 动力学模态分解及其在流体力学中的应用[J]. 空气动力学学报, 2018, 36(2): 163-179. doi: 10.7638/kqdlxxb-2017.0134
KOU J Q, ZHANG W W. Dynamic mode decomposition and its applications in fluid dynamics[J]. Acta Aerodynamica Sinica, 2018, 36(2): 163-179. (in Chinese) doi: CNKI:SUN:KQDX.0.2018-02-001
|
[17] |
SIEBER M, PASCHEREIT C O, OBERLEITHNER K. Spectral proper orthogonal decomposition[J]. Journal of Fluid Mechanics, 2016, 792: 798-828. DOI: 10.1017/jfm.2016.103
|
[18] |
KAISER E, NOACK B R, CORDIER L, et al. Cluster-based reduced-order modelling of a mixing layer[J]. Journal of Fluid Mechanics, 2014, 754: 365-414. DOI: 10.1017/jfm.2014.355
|
[19] |
CHU S J, XIA C, WANG H F, et al. Three-dimensional spectral proper orthogonal decomposition analyses of the turbulent flow around a seal-vibrissa-shaped cylinder[J]. Physics of Fluids, 2021, 33(2): 025106. DOI: 10.1063/5.0035789
|
[20] |
RIBEIRO J H M, WOLF W R. Identification of coherent structures in the flow past a NACA0012 airfoil via proper orthogonal decomposition[J]. Physics of Fluids, 2017, 29(8): 085104. DOI: 10.1063/1.4997202
|
[21] |
KADU P A, SAKAI Y, ITO Y, et al. Application of spectral proper orthogonal decomposition to velocity and passive scalar fields in a swirling coaxial jet[J]. Physics of Fluids, 2020, 32(1): 015106. DOI: 10.1063/1.5131627
|
[22] |
SHUR M L, SPALART P R, STRELETS M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29(6): 1638-1649. DOI: 10.1016/j.ijheatfluidflow.2008.07.001
|
[23] |
ZHOU Z W, XIA C, SHAN X Z, et al. The impact of bogie sections on the wake dynamics of a high-speed train[J]. Flow, Turbulence and Combustion, 2020, 104(1): 89-113. doi: 10.1007/s10494-019-00052-w
|
[1] | CAO Jiufa, SONG Quanmin, WANG Chaoqun, ZHU Weijun, KE Shitang. Unsteady characteristics of wake effect for multiple wind turbines under gust wind condition[J]. ACTA AERODYNAMICA SINICA, 2022, 40(4): 247-255. DOI: 10.7638/kqdlxxb-2021.0309 |
[2] | MA Shuai, WANG Jiantao, QIU Ming, LIU Gang. Unsteady numerical simulation verification of slipstream effect on turboprop[J]. ACTA AERODYNAMICA SINICA, 2019, 37(5): 804-812. DOI: 10.7638/kqdlxxb-2017.0146 |
[3] | YANG Xiaochuan, WANG Yuntao, MENG Dehong, MIAO Tao, WANG Wei. Study on wing slipstream effects of distributed propellers with different rotating directions[J]. ACTA AERODYNAMICA SINICA, 2019, 37(1): 89-98. DOI: 10.7638/kqdlxxb-2018.0168 |
[4] | REN Xiaofeng, DUAN Zhuoyi, WEI Jianlong. Numerical simulation of propeller slipstream effects on pitching static stability[J]. ACTA AERODYNAMICA SINICA, 2017, 35(3): 383-391. DOI: 10.7638/kqdlxxb-2017.0006 |
[5] | YANGXiaochuan, WANGYuntao, WANGGuangxue, ZHANGYulun. Numerical simulation of unsteady propeller slipstream[J]. ACTA AERODYNAMICA SINICA, 2014, 32(3): 289-294. DOI: 10.7638/kqdlxxb-2012.0147 |
[6] | LIU Xiao-bo, ZHANG Wei-wei, JIANG Yue-wen, LI Shao-fei, YE Zheng-yin. Numerical study on unsteady aerodynamic characteristics of an airfoil with a synthetic jet set in trailing edge[J]. ACTA AERODYNAMICA SINICA, 2012, 30(5): 606-612. |
[7] | Numerical simulations of propeller slipstream flows using actuator disk theory[J]. ACTA AERODYNAMICA SINICA, 2012, 30(2): 219-222. |
[8] | WU Da-wei, WANG Liang, LI Han-bing, LI Shu. Experimental investigation on plain flap control characteristics in slipstream of small scale propeller[J]. ACTA AERODYNAMICA SINICA, 2011, 29(5): 567-572. DOI: 130.25/j.issn.0258-1825.2011.05.006 |
[9] | WANG Yuan-jing, FAN Zhao-lin, L(U) Quan-zhou, HE Zhong, WU Jun-qiang. Analysis of the unsteady character of the flow field at high incidence[J]. ACTA AERODYNAMICA SINICA, 2007, 25(2): 145-149,. |
[10] | Investigation on unsteady wind-tunnel wall interference[J]. ACTA AERODYNAMICA SINICA, 2004, 22(4): 384-388. |
1. |
伍钒,汤柠铭,于德壮,韩胜,鲁红兵,徐任泽. 内燃机车车顶高温浮射流扩散规律的数值研究. 空气动力学学报. 2024(07): 58-67 .
![]() | |
2. |
胡啸,马天昊,王潇飞,邓自刚,张继旺,张卫华. 真空管道磁浮交通车体热压载荷分布特征及其非定常特性. 实验流体力学. 2023(01): 9-28 .
![]() | |
3. |
王业腾,张超,白夜,孙振旭. 双层动车组列车风特性研究. 科学技术与工程. 2023(10): 4064-4071 .
![]() | |
4. |
蒋利杰,张人会,陈学炳,郭广强. 基于模态分解的液环泵喷射器内非定常流动分析. 农业工程学报. 2022(21): 16-23 .
![]() |