GUO T, XIA C, CHU S J, et al. Impact of different bogie configuations on slipstream and unsteady wake of a high-speed train[J]. Acta Aerodynamica Sinica, 2022, 40(2): 94−104. DOI: 10.7638/kqdlxxb-2021.0239
Citation: GUO T, XIA C, CHU S J, et al. Impact of different bogie configuations on slipstream and unsteady wake of a high-speed train[J]. Acta Aerodynamica Sinica, 2022, 40(2): 94−104. DOI: 10.7638/kqdlxxb-2021.0239

Impact of different bogie configuations on slipstream and unsteady wake of a high-speed train

More Information
  • Received Date: August 29, 2021
  • Revised Date: September 15, 2021
  • Accepted Date: September 23, 2021
  • Available Online: November 15, 2021
  • With the increasing speed of the high-speed train (HST), the safety problem associated with the slipstream caused by the unsteady wake of HST is becoming more and more prominent. In order to explore the impact of bogie configurations on the slipstream and unsteady wake of HST, a scaled two-car HST model CRH3 with three different bogie configurations i.e. asymmetric bogies (AB), symmetric bogies (SB) and without bogies but empty cavities (WoB) is numerically simulated using the improved delayed detached eddy simulation (IDDES). Profiles of the time-averaged and root mean square of the slipstream velocity as well as the unsteady wake structures are comparatively analyzed. In addition, the spectral proper orthogonal decomposition (SPOD) method is used for the mode decomposition and the wake flow reconstruction. The results show that a pair of counter-rotating half-loop streamwise vortices shedding alternatively dominates the unsteady wake for all the three bogie configurations. Compared to the SB configuration, disturbances induced by the AB configuration can interact more strongly with the streamwise vortex pair in the wake region, increasing the intensity of alternative vortex shedding and inducing a larger fluctuation of the slipstream velocity. For the WoB configuration, large-scale vortices separated from the bogie cavity and trailing edge result in a wider wake in the spanwise direction and the largest time-averaged slipstream velocity. Furthermore, by enhancing the diagonal similarity of the correlation matrix, SPOD can enhance the pairing of dominant modes, highlight modal peak frequencies and make modal spatial distribution clearer. The above research findings have a certain significance for the optimal design of bogies for HST, and show the advantages of SPOD in analyzing the unsteady wake of HST.
  • [1]
    杨国伟, 魏宇杰, 赵桂林, 等. 高速列车的关键力学问题[J]. 力学进展, 2015, 45(1): 217-460. doi: 10.6052/1000-0992-13-091

    YANG G W, WEI Y J, ZHAO G L, et al. Research progress on the mechanics of high speed rails[J]. Advances in Mechanics, 2015, 45(1): 217-460. (in Chinese) doi: 10.6052/1000-0992-13-091
    [2]
    SUZUKI M, NAKADE K, IDO A. Countermeasures for reducing unsteady aerodynamic force acting on high-speed train in tunnel by use of modifications of train shapes[J]. Journal of Mechanical Systems for Transportation and Logistics, 2009, 2(1): 1-12. DOI: 10.1299/jmtl.2.1
    [3]
    BAKER C J, QUINN A, SIMA M, et al. Full-scale measurement and analysis of train slipstreams and wakes. Part 1: Ensemble averages[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2014, 228(5): 451-467. DOI: 10.1177/0954409713485944
    [4]
    BAKER C J, DALLEY S J, JOHNSON T, et al. The slipstream and wake of a high-speed train[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2001, 215(2): 83-99. DOI: 10.1243/0954409011531422
    [5]
    STERLING M, BAKER C J, JORDAN S C, et al. A study of the slipstreams of high-speed passenger trains and freight trains[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2008, 222(2): 177-193. DOI: 10.1243/09544097jrrt133
    [6]
    BELL J R, BURTON D, THOMPSON M C, et al. Moving model analysis of the slipstream and wake of a high-speed train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 136: 127-137. DOI: 10.1016/j.jweia.2014.09.007
    [7]
    XIA C, WANG H F, SHAN X Z, et al. Effects of ground configurations on the slipstream and near wake of a high-speed train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 168: 177-189. DOI: 10.1016/j.jweia.2017.06.005
    [8]
    BELL J R, BURTON D, THOMPSON M C, et al. Dynamics of trailing vortices in the wake of a generic high-speed train[J]. Journal of Fluids and Structures, 2016, 65: 238-256. DOI: 10.1016/j.jfluidstructs.2016.06.003
    [9]
    BELL J R, BURTON D, THOMPSON M C, et al. Flow topology and unsteady features of the wake of a generic high-speed train[J]. Journal of Fluids and Structures, 2016, 61: 168-183. DOI: 10.1016/j.jfluidstructs.2015.11.009
    [10]
    XIA C, WANG H F, BAO D, et al. Unsteady flow structures in the wake of a high-speed train[J]. Experimental Thermal and Fluid Science, 2018, 98: 381-396. DOI: 10.1016/j.expthermflusci.2018.06.010
    [11]
    WANG S B, BURTON D, HERBST A, et al. The effect of bogies on high-speed train slipstream and wake[J]. Journal of Fluids and Structures, 2018, 83: 471-489. DOI: 10.1016/j.jfluidstructs.2018.03.013
    [12]
    DONG T Y, LIANG X F, KRAJNOVIĆ S, et al. Effects of simplifying train bogies on surrounding flow and aerodynamic forces[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 191: 170-182. DOI: 10.1016/j.jweia.2019.06.006
    [13]
    LIU W, GUO D L, ZHANG Z J, et al. Effects of bogies on the wake flow of a high-speed train[J]. Applied Sciences, 2019, 9(4): 759. DOI: 10.3390/app9040759
    [14]
    ROWLEY C W, DAWSON S T M. Model reduction for flow analysis and control[J]. Annual Review of Fluid Mechanics, 2017, 49(1): 387-417. DOI: 10.1146/annurev-fluid-010816-060042
    [15]
    TAIRA K, BRUNTON S L, DAWSON S T M, et al. Modal analysis of fluid flows: an overview[J]. AIAA Journal, 2017, 55(12): 4013-4041. DOI: 10.2514/1.J056060
    [16]
    寇家庆, 张伟伟. 动力学模态分解及其在流体力学中的应用[J]. 空气动力学学报, 2018, 36(2): 163-179. doi: 10.7638/kqdlxxb-2017.0134

    KOU J Q, ZHANG W W. Dynamic mode decomposition and its applications in fluid dynamics[J]. Acta Aerodynamica Sinica, 2018, 36(2): 163-179. (in Chinese) doi: CNKI:SUN:KQDX.0.2018-02-001
    [17]
    SIEBER M, PASCHEREIT C O, OBERLEITHNER K. Spectral proper orthogonal decomposition[J]. Journal of Fluid Mechanics, 2016, 792: 798-828. DOI: 10.1017/jfm.2016.103
    [18]
    KAISER E, NOACK B R, CORDIER L, et al. Cluster-based reduced-order modelling of a mixing layer[J]. Journal of Fluid Mechanics, 2014, 754: 365-414. DOI: 10.1017/jfm.2014.355
    [19]
    CHU S J, XIA C, WANG H F, et al. Three-dimensional spectral proper orthogonal decomposition analyses of the turbulent flow around a seal-vibrissa-shaped cylinder[J]. Physics of Fluids, 2021, 33(2): 025106. DOI: 10.1063/5.0035789
    [20]
    RIBEIRO J H M, WOLF W R. Identification of coherent structures in the flow past a NACA0012 airfoil via proper orthogonal decomposition[J]. Physics of Fluids, 2017, 29(8): 085104. DOI: 10.1063/1.4997202
    [21]
    KADU P A, SAKAI Y, ITO Y, et al. Application of spectral proper orthogonal decomposition to velocity and passive scalar fields in a swirling coaxial jet[J]. Physics of Fluids, 2020, 32(1): 015106. DOI: 10.1063/1.5131627
    [22]
    SHUR M L, SPALART P R, STRELETS M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29(6): 1638-1649. DOI: 10.1016/j.ijheatfluidflow.2008.07.001
    [23]
    ZHOU Z W, XIA C, SHAN X Z, et al. The impact of bogie sections on the wake dynamics of a high-speed train[J]. Flow, Turbulence and Combustion, 2020, 104(1): 89-113. doi: 10.1007/s10494-019-00052-w
  • Related Articles

    [1]CAO Jiufa, SONG Quanmin, WANG Chaoqun, ZHU Weijun, KE Shitang. Unsteady characteristics of wake effect for multiple wind turbines under gust wind condition[J]. ACTA AERODYNAMICA SINICA, 2022, 40(4): 247-255. DOI: 10.7638/kqdlxxb-2021.0309
    [2]MA Shuai, WANG Jiantao, QIU Ming, LIU Gang. Unsteady numerical simulation verification of slipstream effect on turboprop[J]. ACTA AERODYNAMICA SINICA, 2019, 37(5): 804-812. DOI: 10.7638/kqdlxxb-2017.0146
    [3]YANG Xiaochuan, WANG Yuntao, MENG Dehong, MIAO Tao, WANG Wei. Study on wing slipstream effects of distributed propellers with different rotating directions[J]. ACTA AERODYNAMICA SINICA, 2019, 37(1): 89-98. DOI: 10.7638/kqdlxxb-2018.0168
    [4]REN Xiaofeng, DUAN Zhuoyi, WEI Jianlong. Numerical simulation of propeller slipstream effects on pitching static stability[J]. ACTA AERODYNAMICA SINICA, 2017, 35(3): 383-391. DOI: 10.7638/kqdlxxb-2017.0006
    [5]YANGXiaochuan, WANGYuntao, WANGGuangxue, ZHANGYulun. Numerical simulation of unsteady propeller slipstream[J]. ACTA AERODYNAMICA SINICA, 2014, 32(3): 289-294. DOI: 10.7638/kqdlxxb-2012.0147
    [6]LIU Xiao-bo, ZHANG Wei-wei, JIANG Yue-wen, LI Shao-fei, YE Zheng-yin. Numerical study on unsteady aerodynamic characteristics of an airfoil with a synthetic jet set in trailing edge[J]. ACTA AERODYNAMICA SINICA, 2012, 30(5): 606-612.
    [7]Numerical simulations of propeller slipstream flows using actuator disk theory[J]. ACTA AERODYNAMICA SINICA, 2012, 30(2): 219-222.
    [8]WU Da-wei, WANG Liang, LI Han-bing, LI Shu. Experimental investigation on plain flap control characteristics in slipstream of small scale propeller[J]. ACTA AERODYNAMICA SINICA, 2011, 29(5): 567-572. DOI: 130.25/j.issn.0258-1825.2011.05.006
    [9]WANG Yuan-jing, FAN Zhao-lin, L(U) Quan-zhou, HE Zhong, WU Jun-qiang. Analysis of the unsteady character of the flow field at high incidence[J]. ACTA AERODYNAMICA SINICA, 2007, 25(2): 145-149,.
    [10]Investigation on unsteady wind-tunnel wall interference[J]. ACTA AERODYNAMICA SINICA, 2004, 22(4): 384-388.
  • Cited by

    Periodical cited type(4)

    1. 伍钒,汤柠铭,于德壮,韩胜,鲁红兵,徐任泽. 内燃机车车顶高温浮射流扩散规律的数值研究. 空气动力学学报. 2024(07): 58-67 . 本站查看
    2. 胡啸,马天昊,王潇飞,邓自刚,张继旺,张卫华. 真空管道磁浮交通车体热压载荷分布特征及其非定常特性. 实验流体力学. 2023(01): 9-28 .
    3. 王业腾,张超,白夜,孙振旭. 双层动车组列车风特性研究. 科学技术与工程. 2023(10): 4064-4071 .
    4. 蒋利杰,张人会,陈学炳,郭广强. 基于模态分解的液环泵喷射器内非定常流动分析. 农业工程学报. 2022(21): 16-23 .

    Other cited types(4)

Catalog

    Article views (406) PDF downloads (48) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return