Citation: | BAO Y, HE J C, FANG M W. Large scale circulation transition in thermal convection with large Prandtl number[J]. Acta Aerodynamica Sinica, 2022, 40(2): 174−181. DOI: 10.7638/kqdlxxb-2021.0335 |
[1] |
AHLERS G, GROSSMANN S, LOHSE D. Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection[J]. Reviews of Modern Physics, 2009, 81(2): 503-537. DOI: 10.1103/revmodphys.81.503
|
[2] |
LOHSE D, XIA K Q. Small-scale properties of turbulent Rayleigh-bénard convection[J]. Annual Review of Fluid Mechanics, 2010, 42: 335-364. DOI: 10.1146/annurev.fluid.010908.165152
|
[3] |
XIA K Q. Current trends and future directions in turbulent thermal convection[J]. Theoretical and Applied Mechanics Letters, 2013, 3(5): 052001. DOI: 10.1063/2.1305201
|
[4] |
GLOBE S, DROPKIN D. Natural-convection heat transfer in liquids confined by two horizontal plates and heated from below[J]. Journal of Heat Transfer, 1959, 81(1): 24-28. DOI: 10.1115/1.4008124
|
[5] |
DAVIS A H. XXXI. Natural convective cooling of wires[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1922, 43(254): 329-339. DOI: 10.1080/14786442208565219
|
[6] |
DAVIS A H. LXXIX. Natural convective cooling in fluids[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1922, 44(263): 920-940. DOI: 10.1080/14786441208562566
|
[7] |
HESLOT F, CASTAING B, LIBCHABER A. Transitions to turbulence in helium gas[J]. Physical Review A, General Physics, 1987, 36(12): 5870-5873. DOI: 10.1103/physreva.36.5870
|
[8] |
SHRAIMAN B I, SIGGIA E D. Heat transport in high-Rayleigh-number convection[J]. Physical Review A, Atomic, Molecular, and Optical Physics, 1990, 42(6): 3650-3653. DOI: 10.1103/physreva.42.3650
|
[9] |
GROSSMANN S, LOHSE D. Scaling in thermal convection: a unifying theory[J]. Journal of Fluid Mechanics, 2000, 407: 27-56. DOI: 10.1017/s0022112099007545
|
[10] |
GROSSMANN S, LOHSE D. Thermal convection for large Prandtl numbers[J]. Physical Review Letters, 2001, 86(15): 3316-3319. DOI: 10.1103/PhysRevLett.86.3316
|
[11] |
SCHMALZL J, BREUER M, HANSEN U. On the validity of two-dimensional numerical approaches to time-dependent thermal convection[J]. Europhysics Letters (EPL), 2004, 67(3): 390-396. DOI: 10.1209/epl/i2003-10298-4
|
[12] |
VAN DER POEL E P, STEVENS R J A M, LOHSE D. Comparison between two- and three-dimensional Rayleigh–bénard convection[J]. Journal of Fluid Mechanics, 2013, 736: 177-194. DOI: 10.1017/jfm.2013.488
|
[13] |
HUANG M J, BAO Y, . Characteristics of flow and thermal boundary layer in turbulent Rayleigh-Bénard convection[J]. Acta Physica Sinica, 2016, 65(20): 204702. DOI: 10.7498/aps.65.204702
|
[14] |
GAO Z Y, LUO J H, BAO Y. Numerical study of heat-transfer in two- and quasi-two-dimensional Rayleigh–Bénard convection[J]. Chinese Physics B, 2018, 27(10): 104702. DOI: 10.1088/1674-1056/27/10/104702
|
[15] |
ZHANG Y Z, SUN C, BAO Y, et al. How surface roughness reduces heat transport for small roughness heights in turbulent Rayleigh–Bénard convection[J]. Journal of Fluid Mechanics, 2018, 836: R2. DOI: 10.1017/jfm.2017.786
|
[16] |
ZHU X J, MATHAI V, STEVENS R J A M, et al. Transition to the ultimate regime in two-dimensional Rayleigh-bénard convection[J]. Physical Review Letters, 2018, 120(14): 144502. DOI: 10.1103/PhysRevLett.120.144502
|
[17] |
HE J C, FANG M W, GAO Z Y, et al. Effects of Prandtl number in two-dimensional turbulent convection[J]. Chinese Physics B, 2021, 30(9): 094701. DOI: 10.1088/1674-1056/ac0781
|
[18] |
SHISHKINA O, HORN S, WAGNER S, et al. Thermal boundary layer equation for turbulent Rayleigh-Bénard convection[J]. Physical Review Letters, 2015, 114(11): 114302. DOI: 10.1103/PhysRevLett.114.114302
|
[19] |
SHISHKINA O, HORN S, EMRAN M S, et al. Mean temperature profiles in turbulent thermal convection[J]. Physical Review Fluids, 2017, 2(11): 113502. DOI: 10.1103/physrevfluids.2.113502
|
[20] |
CASTILLO-CASTELLANOS A, SERGENT A, ROSSI M. Reversal cycle in square Rayleigh–Bénard cells in turbulent regime[J]. Journal of Fluid Mechanics, 2016, 808: 614-640. DOI: 10.1017/jfm.2016.647
|
[21] |
PANDEY A, VERMA M K, BARMA M. Reversals in infinite-Prandtl-number Rayleigh-bénard convection[J]. Physical Review E, 2018, 98(2): 023109. DOI: 10.1103/physreve.98.023109
|
[22] |
ZHANG Y, ZHOU Q, SUN C. Statistics of kinetic and thermal energy dissipation rates in two-dimensional turbulent Rayleigh–Bénard convection[J]. Journal of Fluid Mechanics, 2017, 814: 165-184. DOI: 10.1017/jfm.2017.19
|
[23] |
XU A, SHI L, XI H D. Statistics of temperature and thermal energy dissipation rate in low-Prandtl number turbulent thermal convection[J]. Physics of Fluids, 2019, 31(12): 125101. DOI: 10.1063/1.5129818
|
[24] |
NG C S, OOI A, LOHSE D, et al. Vertical natural convection: application of the unifying theory of thermal convection[J]. Journal of Fluid Mechanics, 2015, 764: 349-361. DOI: 10.1017/jfm.2014.712
|
[25] |
CHILLÀ F, SCHUMACHER J. New perspectives in turbulent Rayleigh-Bénard convection[J]. The European Physical Journal E, 2012, 35(7): 58. DOI: 10.1140/epje/i2012-12058-1
|
[26] |
STEVENS R J A M, VAN DER POEL E P, GROSSMANN S, et al. The unifying theory of scaling in thermal convection: the updated prefactors[J]. Journal of Fluid Mechanics, 2013, 730: 295-308. DOI: 10.1017/jfm.2013.298
|
[27] |
CHONG K L, WAGNER S, KACZOROWSKI M, et al. Effect of Prandtl number on heat transport enhancement in Rayleigh-Bénard convection under geometrical confinement[J]. Physical Review Fluids, 2018, 3: 013501. DOI: 10.1103/physrevfluids.3.013501
|
[28] |
SILANO G, SREENIVASAN K R, VERZICCO R. Numerical simulations of Rayleigh–Bénard convection for Prandtl numbers between 10–1 and 104 and Rayleigh numbers between 105 and 109[J]. Journal of Fluid Mechanics, 2010, 662: 409-446. DOI: 10.1017/s0022112010003290
|
[29] |
SHISHKINA O, EMRAN M S, GROSSMANN S, et al. Scaling relations in large-Prandtl-number natural thermal convection[J]. Physical Review Fluids, 2017, 2(10): 103502. DOI: 10.1103/physrevfluids.2.103502
|
[30] |
VERZICCO R, CAMUSSI R. Prandtl number effects in convective turbulence[J]. Journal of Fluid Mechanics, 1999, 383: 55-73. DOI: 10.1017/s0022112098003619
|
[31] |
BREUER M, WESSLING S, SCHMALZL J, et al. Effect of inertia in Rayleigh-Bénard convection[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2004, 69(2 pt 2): 026302. doi: 10.1103/physreve.69.026302
|
[32] |
LI X M, HE J D, TIAN Y, et al. Effects of Prandtl number in quasi-two-dimensional Rayleigh–bénard convection[J]. Journal of Fluid Mechanics, 2021, 915: A60. DOI: 10.1017/jfm.2021.21
|
[33] |
SUN C, XI H D, XIA K Q. Azimuthal symmetry, flow dynamics, and heat transport in turbulent thermal convection in a cylinder with an aspect ratio of 0.5[J]. Physical Review Letters, 2005, 95(7): 074502. DOI: 10.1103/PhysRevLett.95.074502
|
[34] |
BROWN E, NIKOLAENKO A, AHLERS G. Reorientation of the large-scale circulation in turbulent Rayleigh-Bénard convection[J]. Physical Review Letters, 2005, 95(8): 084503. DOI: 10.1103/PhysRevLett.95.084503
|
[35] |
BAO Y, GAO Z Y, YE M X, et al. Numerical study of Prandtl number effects in turbulent thermal convection[J]. Acta Physica Sinica, 2018, 67(1): 014701. DOI: 10.7498/aps.67.20171518
|
[36] |
BAO Y, LUO J, YE M. Parallel direct method of DNS for two-dimensional turbulent Rayleigh-bénard convection[J]. Journal of Mechanics, 2018, 34(2): 159-166. DOI: 10.1017/jmech.2017.54
|
[37] |
罗嘉辉, 包芸. 极高Ra湍流热对流模拟及其流动特征[J]. 计算机辅助工程, 2017, 26(4): 65-70.
LUO J H, BAO Y. Simulation of turbulent thermal convection and its characteristics at very high Ra[J]. Computer Aided Engineering, 2017, 26(4): 65-70. (in Chinese)
|
[38] |
BAO Y, HE J C, GAO Z Y, et al. Effect of plume motion path on heat transfer characteristics in two-dimensional turbulent thermal convection[J]. Acta Physica Sinica, 2019, 68(16): 164701. DOI: 10.7498/aps.68.20190323
|
[39] |
SUGIYAMA K, CALZAVARINI E, GROSSMANN S, et al. Flow organization in two-dimensional non-Oberbeck–Boussinesq Rayleigh–Bénard convection in water[J]. Journal of Fluid Mechanics, 2009, 637: 105-135. DOI: 10.1017/s0022112009008027
|