BAO Y, HE J C, FANG M W. Large scale circulation transition in thermal convection with large Prandtl number[J]. Acta Aerodynamica Sinica, 2022, 40(2): 174−181. DOI: 10.7638/kqdlxxb-2021.0335
Citation: BAO Y, HE J C, FANG M W. Large scale circulation transition in thermal convection with large Prandtl number[J]. Acta Aerodynamica Sinica, 2022, 40(2): 174−181. DOI: 10.7638/kqdlxxb-2021.0335

Large scale circulation transition in thermal convection with large Prandtl number

More Information
  • Received Date: October 27, 2021
  • Revised Date: January 18, 2022
  • Accepted Date: February 07, 2022
  • Available Online: May 04, 2022
  • We report a numerical study of large scale circulation (LSC) in two-dimensional turbulent thermal convection with two Prandtl numbers (Pr = 10, 20) and Rayleigh number (Ra) ranging from 1×108 to 1×1012. To compared with small Pr, some results at Pr = 4.3 are shown in this article. Three patterns of LSC are found at large Prandtl numbers, i.e. square, ellipse and circle, while only the latter two patterns are found at small Prandtl numbers. For the classical elliptical LSC, the positions of maximum velocity always appear between the LSC and the corner rolls, and the positions appear randomly in the LSC for the circular LSC. Whereas, the maximum velocities appear near the sidewalls for the square LSC. The LSC transition from square to ellipse is a gradual change while the transition from ellipse to circle is a drastic change. The ratio between the major axis and the minor axis of LSC is 1.0~1.2 for square, greater than 1.2 for ellipse, but near 1.0 for circle. The relationship between Reynolds number (Re) and Ra is influenced by the transition of LSC, which can be indicated by the compensated Re. The compensated Re decreases slightly and then reaches a local minimum when the LSC changes from square to ellipse, while it decreases sharply from ellipse to circle.
  • [1]
    AHLERS G, GROSSMANN S, LOHSE D. Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection[J]. Reviews of Modern Physics, 2009, 81(2): 503-537. DOI: 10.1103/revmodphys.81.503
    [2]
    LOHSE D, XIA K Q. Small-scale properties of turbulent Rayleigh-bénard convection[J]. Annual Review of Fluid Mechanics, 2010, 42: 335-364. DOI: 10.1146/annurev.fluid.010908.165152
    [3]
    XIA K Q. Current trends and future directions in turbulent thermal convection[J]. Theoretical and Applied Mechanics Letters, 2013, 3(5): 052001. DOI: 10.1063/2.1305201
    [4]
    GLOBE S, DROPKIN D. Natural-convection heat transfer in liquids confined by two horizontal plates and heated from below[J]. Journal of Heat Transfer, 1959, 81(1): 24-28. DOI: 10.1115/1.4008124
    [5]
    DAVIS A H. XXXI. Natural convective cooling of wires[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1922, 43(254): 329-339. DOI: 10.1080/14786442208565219
    [6]
    DAVIS A H. LXXIX. Natural convective cooling in fluids[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1922, 44(263): 920-940. DOI: 10.1080/14786441208562566
    [7]
    HESLOT F, CASTAING B, LIBCHABER A. Transitions to turbulence in helium gas[J]. Physical Review A, General Physics, 1987, 36(12): 5870-5873. DOI: 10.1103/physreva.36.5870
    [8]
    SHRAIMAN B I, SIGGIA E D. Heat transport in high-Rayleigh-number convection[J]. Physical Review A, Atomic, Molecular, and Optical Physics, 1990, 42(6): 3650-3653. DOI: 10.1103/physreva.42.3650
    [9]
    GROSSMANN S, LOHSE D. Scaling in thermal convection: a unifying theory[J]. Journal of Fluid Mechanics, 2000, 407: 27-56. DOI: 10.1017/s0022112099007545
    [10]
    GROSSMANN S, LOHSE D. Thermal convection for large Prandtl numbers[J]. Physical Review Letters, 2001, 86(15): 3316-3319. DOI: 10.1103/PhysRevLett.86.3316
    [11]
    SCHMALZL J, BREUER M, HANSEN U. On the validity of two-dimensional numerical approaches to time-dependent thermal convection[J]. Europhysics Letters (EPL), 2004, 67(3): 390-396. DOI: 10.1209/epl/i2003-10298-4
    [12]
    VAN DER POEL E P, STEVENS R J A M, LOHSE D. Comparison between two- and three-dimensional Rayleigh–bénard convection[J]. Journal of Fluid Mechanics, 2013, 736: 177-194. DOI: 10.1017/jfm.2013.488
    [13]
    HUANG M J, BAO Y, . Characteristics of flow and thermal boundary layer in turbulent Rayleigh-Bénard convection[J]. Acta Physica Sinica, 2016, 65(20): 204702. DOI: 10.7498/aps.65.204702
    [14]
    GAO Z Y, LUO J H, BAO Y. Numerical study of heat-transfer in two- and quasi-two-dimensional Rayleigh–Bénard convection[J]. Chinese Physics B, 2018, 27(10): 104702. DOI: 10.1088/1674-1056/27/10/104702
    [15]
    ZHANG Y Z, SUN C, BAO Y, et al. How surface roughness reduces heat transport for small roughness heights in turbulent Rayleigh–Bénard convection[J]. Journal of Fluid Mechanics, 2018, 836: R2. DOI: 10.1017/jfm.2017.786
    [16]
    ZHU X J, MATHAI V, STEVENS R J A M, et al. Transition to the ultimate regime in two-dimensional Rayleigh-bénard convection[J]. Physical Review Letters, 2018, 120(14): 144502. DOI: 10.1103/PhysRevLett.120.144502
    [17]
    HE J C, FANG M W, GAO Z Y, et al. Effects of Prandtl number in two-dimensional turbulent convection[J]. Chinese Physics B, 2021, 30(9): 094701. DOI: 10.1088/1674-1056/ac0781
    [18]
    SHISHKINA O, HORN S, WAGNER S, et al. Thermal boundary layer equation for turbulent Rayleigh-Bénard convection[J]. Physical Review Letters, 2015, 114(11): 114302. DOI: 10.1103/PhysRevLett.114.114302
    [19]
    SHISHKINA O, HORN S, EMRAN M S, et al. Mean temperature profiles in turbulent thermal convection[J]. Physical Review Fluids, 2017, 2(11): 113502. DOI: 10.1103/physrevfluids.2.113502
    [20]
    CASTILLO-CASTELLANOS A, SERGENT A, ROSSI M. Reversal cycle in square Rayleigh–Bénard cells in turbulent regime[J]. Journal of Fluid Mechanics, 2016, 808: 614-640. DOI: 10.1017/jfm.2016.647
    [21]
    PANDEY A, VERMA M K, BARMA M. Reversals in infinite-Prandtl-number Rayleigh-bénard convection[J]. Physical Review E, 2018, 98(2): 023109. DOI: 10.1103/physreve.98.023109
    [22]
    ZHANG Y, ZHOU Q, SUN C. Statistics of kinetic and thermal energy dissipation rates in two-dimensional turbulent Rayleigh–Bénard convection[J]. Journal of Fluid Mechanics, 2017, 814: 165-184. DOI: 10.1017/jfm.2017.19
    [23]
    XU A, SHI L, XI H D. Statistics of temperature and thermal energy dissipation rate in low-Prandtl number turbulent thermal convection[J]. Physics of Fluids, 2019, 31(12): 125101. DOI: 10.1063/1.5129818
    [24]
    NG C S, OOI A, LOHSE D, et al. Vertical natural convection: application of the unifying theory of thermal convection[J]. Journal of Fluid Mechanics, 2015, 764: 349-361. DOI: 10.1017/jfm.2014.712
    [25]
    CHILLÀ F, SCHUMACHER J. New perspectives in turbulent Rayleigh-Bénard convection[J]. The European Physical Journal E, 2012, 35(7): 58. DOI: 10.1140/epje/i2012-12058-1
    [26]
    STEVENS R J A M, VAN DER POEL E P, GROSSMANN S, et al. The unifying theory of scaling in thermal convection: the updated prefactors[J]. Journal of Fluid Mechanics, 2013, 730: 295-308. DOI: 10.1017/jfm.2013.298
    [27]
    CHONG K L, WAGNER S, KACZOROWSKI M, et al. Effect of Prandtl number on heat transport enhancement in Rayleigh-Bénard convection under geometrical confinement[J]. Physical Review Fluids, 2018, 3: 013501. DOI: 10.1103/physrevfluids.3.013501
    [28]
    SILANO G, SREENIVASAN K R, VERZICCO R. Numerical simulations of Rayleigh–Bénard convection for Prandtl numbers between 10–1 and 104 and Rayleigh numbers between 105 and 109[J]. Journal of Fluid Mechanics, 2010, 662: 409-446. DOI: 10.1017/s0022112010003290
    [29]
    SHISHKINA O, EMRAN M S, GROSSMANN S, et al. Scaling relations in large-Prandtl-number natural thermal convection[J]. Physical Review Fluids, 2017, 2(10): 103502. DOI: 10.1103/physrevfluids.2.103502
    [30]
    VERZICCO R, CAMUSSI R. Prandtl number effects in convective turbulence[J]. Journal of Fluid Mechanics, 1999, 383: 55-73. DOI: 10.1017/s0022112098003619
    [31]
    BREUER M, WESSLING S, SCHMALZL J, et al. Effect of inertia in Rayleigh-Bénard convection[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2004, 69(2 pt 2): 026302. doi: 10.1103/physreve.69.026302
    [32]
    LI X M, HE J D, TIAN Y, et al. Effects of Prandtl number in quasi-two-dimensional Rayleigh–bénard convection[J]. Journal of Fluid Mechanics, 2021, 915: A60. DOI: 10.1017/jfm.2021.21
    [33]
    SUN C, XI H D, XIA K Q. Azimuthal symmetry, flow dynamics, and heat transport in turbulent thermal convection in a cylinder with an aspect ratio of 0.5[J]. Physical Review Letters, 2005, 95(7): 074502. DOI: 10.1103/PhysRevLett.95.074502
    [34]
    BROWN E, NIKOLAENKO A, AHLERS G. Reorientation of the large-scale circulation in turbulent Rayleigh-Bénard convection[J]. Physical Review Letters, 2005, 95(8): 084503. DOI: 10.1103/PhysRevLett.95.084503
    [35]
    BAO Y, GAO Z Y, YE M X, et al. Numerical study of Prandtl number effects in turbulent thermal convection[J]. Acta Physica Sinica, 2018, 67(1): 014701. DOI: 10.7498/aps.67.20171518
    [36]
    BAO Y, LUO J, YE M. Parallel direct method of DNS for two-dimensional turbulent Rayleigh-bénard convection[J]. Journal of Mechanics, 2018, 34(2): 159-166. DOI: 10.1017/jmech.2017.54
    [37]
    罗嘉辉, 包芸. 极高Ra湍流热对流模拟及其流动特征[J]. 计算机辅助工程, 2017, 26(4): 65-70.

    LUO J H, BAO Y. Simulation of turbulent thermal convection and its characteristics at very high Ra[J]. Computer Aided Engineering, 2017, 26(4): 65-70. (in Chinese)
    [38]
    BAO Y, HE J C, GAO Z Y, et al. Effect of plume motion path on heat transfer characteristics in two-dimensional turbulent thermal convection[J]. Acta Physica Sinica, 2019, 68(16): 164701. DOI: 10.7498/aps.68.20190323
    [39]
    SUGIYAMA K, CALZAVARINI E, GROSSMANN S, et al. Flow organization in two-dimensional non-Oberbeck–Boussinesq Rayleigh–Bénard convection in water[J]. Journal of Fluid Mechanics, 2009, 637: 105-135. DOI: 10.1017/s0022112009008027
  • Related Articles

    [1]YANG Junwei, SHA Chenglong, WANG Xiangjun, YANG Hua. Experimental investigation of vortex generator influence on wind turbine airfoil aerodynamic performance under turbulent inflow conditions[J]. ACTA AERODYNAMICA SINICA, 2025, 43(5): 31-40. DOI: 10.7638/kqdlxxb-2024.0227
    [2]YUAN Xianxu, LIU Pengxin, ZHOU Qingqing, FU Yalu, YANG Xiaofeng, DU Yanxia. Progress in high-speed high-temperature turbulence research[J]. ACTA AERODYNAMICA SINICA, 2024, 42(4): 1-13. DOI: 10.7638/kqdlxxb-2023.0185
    [3]TAO Tianyou, WANG Hao. Research progress and considerations in the research of non-stationary turbulent characteristics of typhoon wind fields[J]. ACTA AERODYNAMICA SINICA, 2021, 39(4): 162-171. DOI: 10.7638/kqdlxxb-2021.0063
    [4]YU Zhou, HUANG Lihang, YE Taohong, ZHU Minming. Large eddy simulations of high Reynolds number turbulent non-premixed flame and NO formation[J]. ACTA AERODYNAMICA SINICA, 2020, 38(3): 629-640. DOI: 10.7638/kqdlxxb-2020.0036
    [5]LIU Hongpeng, GAO Zhenxun, JIANG Chongwen, LEE Chunhian. Review of researches on compressible turbulent boundary layer combustion for skin friction reduction[J]. ACTA AERODYNAMICA SINICA, 2020, 38(3): 593-602. DOI: 10.7638/kqdlxxb-2019.0147
    [6]GUI Mingyue, ZHANG Leiying, CUI Hao, ZHANG Hui. Turbulent combustion related with detoantion[J]. ACTA AERODYNAMICA SINICA, 2020, 38(3): 515-531. DOI: 10.7638/kqdlxxb-2020.0066
    [7]ZHANG Weiwei, ZHU Linyang, LIU Yilang, KOU Jiaqing. Progresses in the application of machine learning in turbulence modeling[J]. ACTA AERODYNAMICA SINICA, 2019, 37(3): 444-454. DOI: 10.7638/kqdlxxb-2019.0036
    [8]DANG Yabin, LIU Kaili, SUN Yifeng, YANG Xiaoquan. Implicit high order discontinuous Galerkin method for compressible laminar and turbulent flow simulation[J]. ACTA AERODYNAMICA SINICA, 2018, 36(3): 535-541. DOI: 10.7638/kqdlxxb-2017.0183
    [9]Zhou Heng, Zhang Hanxin. Two problems in the transition and turbulence for near space hypersonic flying vehicles[J]. ACTA AERODYNAMICA SINICA, 2017, 35(2): 151-155. DOI: 10.7638/kqdlxxb-2017.0016
    [10]Numerical simulation of drag reduction of superhydrophobic surface in turbulent channel flow[J]. ACTA AERODYNAMICA SINICA, 2012, 30(2): 233-237.

Catalog

    Article views (937) PDF downloads (26) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return