WU X Y, KONG X P, SHEN Z H, et al. Numerical investigation on formation process of high-enthalpy flow fields in hydrogen-driven shock tunnels[J]. Acta Aerodynamica Sinica, 2025, 43(X): 1−10. DOI: 10.7638/kqdlxxb-2024.0105
Citation: WU X Y, KONG X P, SHEN Z H, et al. Numerical investigation on formation process of high-enthalpy flow fields in hydrogen-driven shock tunnels[J]. Acta Aerodynamica Sinica, 2025, 43(X): 1−10. DOI: 10.7638/kqdlxxb-2024.0105

Numerical investigation on formation process of high-enthalpy flow fields in hydrogen-driven shock tunnels

More Information
  • Received Date: July 24, 2024
  • Revised Date: November 12, 2024
  • Accepted Date: December 04, 2024
  • Available Online: April 06, 2025
  • To comprehensively investigate the formation of high-enthalpy flow fields in hydrogen-driven shock tunnels, this study conducted an in-depth numerical investigation using an implicit algorithm with second-order spatial accuracy and dual-time stepping. The simulation covered the entire evolution from tunnel initiation to the establishment of a stable flow field at the nozzle exit. The results demonstrated that under initial conditions of 50 MPa hydrogen in the high-pressure section and 100 kPa air in the low-pressure section (both at 300 K), the double diaphragms ruptured at 8.54 ms. By 10.20 ms, the flow pressure at the nozzle inlet reached 29.8 MPa with a temperature of 3500 K, maintaining these parameters for 6.80 ms. The shock wave evolution at the throat region exhibited a characteristic sequence: "incident shock → oblique shock → shock train → bow shock → lambda shock". In the downstream nozzle section, a primary shock wave formed initially, followed by the emergence of a secondary shock. These two shocks propagated cooperatively downstream, ultimately establishing a stable flow field at 13.00 ms that persisted for 2 ms. The stabilized flow field exhibited a core region with a Mach number of ~9.1, static pressure of ~960 Pa, and static temperature of ~260 K, while the nozzle exit achieved a uniform flow zone with a diameter of approximately 840 mm. This research enhances the fundamental understanding of high-enthalpy flow dynamics in shock tunnels and provides critical insights for optimizing ground-based hypersonic testing facilities to meet the demands of advanced aerospace vehicle development.

  • [1]
    MATSUO K, KAWAGOE S, KAGE K. The interaction of a reflected shock wave with the boundary layer in a shock tube[J]. Bulletin of JSME, 1974, 17(110): 10391046. doi: 10.1299/jsme1958.17.1039
    [2]
    KANEKO M, MEN’SHOV I, NAKAMURA Y. Reflected shock wave/boundary layer interaction in high-enthalpy shock tunnel[C]//Proc of the Fluids 2000 Conference and Exhibit, Denver, CO, USA. AIAA, 2000: AIAA 2000-2600. DOI: 10.2514/6.2000-2600
    [3]
    李进平, 冯珩, 姜宗林. 激波/边界层相互作用诱导的激波风洞气体污染问题[J]. 力学学报, 2008, 40(3): 289296. doi: 10.3321/j.issn:0459-1879.2008.03.001

    LI J P, FENG H, JIANG Z L. Gas contamination induced by the interaction of shock/boundary layer in shock tunnel[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(3): 289296(in Chinese). doi: 10.3321/j.issn:0459-1879.2008.03.001
    [4]
    汪球, 赵伟, 余西龙, 等. 高焓激波风洞有效试验时间的诊断[J]. 航空学报, 2015, 36(11): 35343539. doi: 10.7527/S1000-6893.2015.0014

    WANG Q, ZHAO W, YU X L, et al. Effective test time measurement research for high enthalpy shock tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(11): 35343539(in Chinese). doi: 10.7527/S1000-6893.2015.0014
    [5]
    孔小平, 陈卫, 罗仕超, 等. 高焓激波风洞有效试验时间标定研究[J]. 实验流体力学, 2024, 38(X): 1-7. [5] 孔小平, 陈卫, 罗仕超, 等. 高焓激波风洞有效试验时间标定研究[J/OL]. 实验流体力学, 2024, 38(X): 1-7. DOI: 10.11729/syltlx20230087

    KONG X P, CHEN W, LUO S C, et al. Study on calibration of effective test time in high enthalpy shock tunnel[J/OL]. Journal of Experiments in Fluid Mechanics, 2024, 38(X): 1-7 (in Chinese).
    [6]
    赵伟, 姜宗林, 俞鸿儒. 高焓激波风洞爆轰驱动技术研究[J]. 空气动力学学报, 2009, 27(z1): 6368. doi: 10.3969/j.issn.0258-1825.2009.z1.012

    ZHAO W, JIANG Z L, YU H R. Study on detonation drivers for high-enthalpy shock tunnels[J]. Acta Aerodynamica Sinica, 2009, 27(z1): 6368. doi: 10.3969/j.issn.0258-1825.2009.z1.012
    [7]
    ZHAO W, JIANG Z L, SAITO T, et al. Performance of a detonation driven shock tunnel[J]. Shock Waves, 2005, 14(1): 5359. doi: 10.1007/s00193-004-0238-1
    [8]
    汪球, 赵伟, 余西龙, 等. 高焓激波风洞有效试验时间的测量研究[C]//第十六届全国激波与激波管学术会议论文集, 2014: 431-435.
    [9]
    陶渊, 范晓樯, 刘俊林. 超声速连续风洞喷管启动过程分析[J]. 推进技术, 2015, 36(1): 2429. doi: 10.13675/j.cnki.tjjs.2015.01.004

    TAO Y, FAN X Q, LIU J L. Studies on starting process of a continuous supersonic wind tunnel nozzle[J]. Journal of Propulsion Technology, 2015, 36(1): 2429(in Chinese). doi: 10.13675/j.cnki.tjjs.2015.01.004
    [10]
    IGRA D. Numerical simulation of nozzle starting flow[J]. Journal of Spacecraft and Rockets, 2016, 53(1): 217224. doi: 10.2514/1.a33260
    [11]
    MOURONVAL A S, HADJADJ A. Numerical study of the starting process in a supersonic nozzle[J]. Journal of Propulsion and Power, 2005, 21(2): 374378. doi: 10.2514/1.6122
    [12]
    张小庆, 乐嘉陵. 脉冲式燃烧风洞起动特性数值研究[J]. 航空动力学报, 2008, 23(9): 15681572.

    ZHANG X Q, LE J L. Numerical study on the starting characteristics of the pulse combustion wind tunnel[J]. Journal of Aerospace Power, 2008, 23(9): 15681572(in Chinese).
    [13]
    WANG Y P, HU Z M, LIU Y F, et al. Starting process in a large-scale shock tunnel[J]. AIAA Journal, 2016, 54(4): 12401249. doi: 10.2514/1.J054145
    [14]
    LEE J Y, LEWIS M J. Numerical study of the flow establishment time in hypersonic shock tunnels[J]. Journal of Spacecraft and Rockets, 1993, 30(2): 152163. doi: 10.2514/3.11523
    [15]
    JIAO X L, CHANG J T, WANG Z Q, et al. Numerical study on hypersonic nozzle-inlet starting characteristics in a shock tunnel[J]. Acta Astronautica, 2017, 130: 167179. doi: 10.1016/j.actaastro.2016.10.027
    [16]
    GUPTA R, YOS J, THOMPSON R A. A review of reaction rates and thermodynamic and transport properties for the 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K: NASA RP 1232 [R]. NASA, 1990.
    [17]
    ZHANG D Q, DENG W X, XING J W, et al. Numerical study of flow establishment process of engine in a shock tunnel[J]. Acta Astronautica, 2023, 205: 199212. doi: 10.1016/j.actaastro.2023.01.041
    [18]
    陈强. 激波管流动的理论与实验技术[M]. 合肥: 中国科学技术大学出版社, 1979.
    [19]
    BRUN R. Shock tubes and shock tunnels: Design and experiments: RTO-EN-AVT-162[R]. RTO, 2009.
  • Related Articles

    [1]JIA Tianhao, GAO Chao, WANG Yushuai, XU Heyong. Investigation on control characteristics of zero-net-mass-flux jet for transonic shock buffeting of airfoil[J]. ACTA AERODYNAMICA SINICA, 2025, 43(3): 29-41. DOI: 10.7638/kqdlxxb-2024.0029
    [2]WU Lilong, LUO Jinling, LI Chao, XIAO Zhixiang, CAO Xiaolong. Effect of inner flow wall temperature on the aerodynamic characteristics of high-speed vehicles[J]. ACTA AERODYNAMICA SINICA, 2022, 40(1): 84-91. DOI: 10.7638/kqdlxxb-2021.0273
    [3]WANG Honghui, DING Juchun, SI Ting, LUO Xisheng. Richtmyer-Meshkov instability of a single-mode interface with reshock[J]. ACTA AERODYNAMICA SINICA, 2022, 40(1): 33-40. DOI: 10.7638/kqdlxxb-2021.0153
    [4]YU Yize, XU Shengli, ZHANG Mengping, ZHANG Zhuhe. Computation on premixed combustion of methane and air mixture induced by cylinders with different radiuses[J]. ACTA AERODYNAMICA SINICA, 2020, 38(1): 35-42. DOI: 10.7638/kqdlxxb-2018.0098
    [5]Xiao Fengshou, Li Zhufei, Zhu Yujian, Yang Jiming. Numerical investigation on some key factors for the unsteady type Ⅳ shock-shock interaction[J]. ACTA AERODYNAMICA SINICA, 2017, 35(1): 20-26. DOI: 10.7638/kqdlxxb-2015.0028
    [6]Wang Qiu, Zhao Wei, Teng Honghui, Jiang Zonglin. Numerical simulation of non-equilibrium characteristics of high enthalpy shock tunnel nozzle flow[J]. ACTA AERODYNAMICA SINICA, 2015, 33(1): 66-71. DOI: 10.7638/kqdlxxb-2013.0001
    [7]FENG Xiaoqiang, LI Zhanke, SONG Bifeng, SANG Jianhua. Optimization of sonicboom and aerodynamic based on structured/unstructured hybrid grid[J]. ACTA AERODYNAMICA SINICA, 2014, 32(1): 30-37. DOI: 10.7638/kqdlxxb-2012.0071
    [8]ZENG Hao, CHEN Xin, HE Li-ming, WU Chun-hua. Investigation on two dimensional shock wave focusing[J]. ACTA AERODYNAMICA SINICA, 2013, 31(3): 316-320.
    [9]ZENG Ming, LIN Zhen-bin, GUO Da-hua, LIU Jun, QU Zhang-hua. Numerical rebuilding of free stream measurement in the high enthalpy shock tunnel[J]. ACTA AERODYNAMICA SINICA, 2009, 27(3): 358-362.
    [10]Computational simulation of three dimensional unsteady flow field induced by a body overtaking a shock wave[J]. ACTA AERODYNAMICA SINICA, 2004, 22(1): 64-68.

Catalog

    Article views (7) PDF downloads (2) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return