TU Guo-hua, DENG Xiao-gang. Spectral property comparison of fifthorder nonlinear WCNS and WENO difference schemes[J]. ACTA AERODYNAMICA SINICA, 2012, 30(6): 709-712.
Citation: TU Guo-hua, DENG Xiao-gang. Spectral property comparison of fifthorder nonlinear WCNS and WENO difference schemes[J]. ACTA AERODYNAMICA SINICA, 2012, 30(6): 709-712.

Spectral property comparison of fifthorder nonlinear WCNS and WENO difference schemes

More Information
  • Received Date: February 13, 2011
  • Revised Date: October 17, 2011
  • Available Online: January 07, 2021
  • Approximate dispersion relation (ADR) may represent modified wave numbers of nonlinear schemes, and a numerical procedure is proposed to compute the ADR. The ADRs of the fifthorder nonlinear WENO5 and WCNS-E-5 finite difference schemes are compared with each other to show their spectral property. The results indicate that the dispersion error of the WCNS-E-5 is smaller than that of the WENO5, and the dissipation error of the WCNS-E-5 is also smaller than that of the WENO5. The whole spectral property of the WCNS-E-5 is better than that of the WENO5.
  • [1]
    张涵信,李沁,庄逢甘. 关于高阶差分格式的问题[J]. 空气动力学学报, 1998, 16(1): 14-23.
    [2]
    VICHNEVETSKY R, BOWLES J B. Fourier analysis of numerical approximations of hyperbolic equations[M]. Philadelphia: Society for Industry and Applied Mathematics, 1982.
    [3]
    LELE S K. Compact finitedifference schemes with spectral like resolution[J]. Journal of Computational Physics, 1992, 103: 16-42.
    [4]
    TAM C K W, WEBB J C. Dispersionrelationpreserving finite difference schemes for computational acoustics[J]. Journal of Computational Physics , 1993, 107(2): 262-281.
    [5]
    KIM J W, LEE D J. Optimized compact finite difference schemes with maximum resolution[J]. AIAA Journal, 1996, 34(5): 887-893.
    [6]
    张涵信. 无波动、无自由参数的耗散差分格式[J]. 空气动力学学报, 1988, 7(2) : 143-165.
    [7]
    JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1): 202-228.
    [8]
    DENG X G, ZHANG H X. Developing highorder weighted compact nonlinear schemes[J]. Journal of Computational Physics , 2000, 165(1): 22-44.
    [9]
    DENG X G. Highorder accurate dissipative weighted compact nonlinear schemes[J]. Science in China (Series A), 2002, 45(3): 356-370.
    [10]
    PIROZZOLI S. On the spectral properties of shockcapturing schemes[J]. Journal of Computational Physics, 2006, 219(2): 489-497.
    [11]
    NONOMURA T, IIZUKA N, FUJII K. Freestream and  vortex preservation properties of highorder WENO and WCNS on curvilinear grids[J]. Computers and Fluids, 2010, 39(2): 197-214.
    [12]
    DENG X G, MAO M L, TU G H, et al. Geometric conservation law and applications to highorder finite difference schemes with stationary grids[J]. Journal of Computational Physics, 2011, 230(4): 1100-1115.
    [13]
    DENG X G, MAO M L, TU G H, et al. Extending weighted compact nonlinear schemes to complex grids with characteristic based interface conditions[J]. AIAA Journal, 2010, 48(12): 2840-2851.
  • Related Articles

    [1]LIU Xuliang, WU Conghai, LI Hu, FAN Zhaolin. A new type of smoothness indicator for weighted essentially non-oscillatory schemes and its application[J]. ACTA AERODYNAMICA SINICA, 2023, 41(5): 20-34. DOI: 10.7638/kqdlxxb-2022.0013
    [2]SHI Jingchang, YAN Hong. Comparison of three WENO limiters in flux reconstruction framework using unstructured grid[J]. ACTA AERODYNAMICA SINICA, 2023, 41(5): 1-11. DOI: 10.7638/kqdlxxb-2021.0383
    [3]TIAN Qi, GUO Yuan, LIANG Xian, LI Xinliang. An adaptive high-resolution hybrid scheme using central flux scheme and WENO scheme[J]. ACTA AERODYNAMICA SINICA, 2019, 37(4): 541-545, 577. DOI: 10.7638/kqdlxxb-2017.0050
    [4]PU Saihu, CHEN Hongquan. A study of gridless method based on third┈order WENO reconstruction[J]. ACTA AERODYNAMICA SINICA, 2014, 32(4): 453-461. DOI: 10.7638/kqdlxxb┈2012.0149
    [5]SUN Dong, CHEN Jiang-tao, LI Qin, ZHANG Han-xin. A hybrid third order scheme and the comparative investigations on two DES methods by computations[J]. ACTA AERODYNAMICA SINICA, 2013, 31(4): 487-493.
    [6]WU Cong-hai, ZHAO Ning, TIAN Lin-lin. An improved hybrid compactWENO scheme[J]. ACTA AERODYNAMICA SINICA, 2013, 31(4): 477-481.
    [8]YANG Ai-ming, WENG Pei-fen, DING Jue, XU Li. Numerical simulation on the flowfield of transonic hovering rotor using implicit WENO schemes[J]. ACTA AERODYNAMICA SINICA, 2010, 28(4): 414-420.
    [9]ZHANG Yi-feng, DENG Xiao-gang, MAO Mei-liang, CHEN Jian-qiang. Investigation of convergence acceleration for high-order scheme (WCNS) in 2D supersonic flows[J]. ACTA AERODYNAMICA SINICA, 2008, 26(3): 349-355.
    [10]Numerical study on the WENO scheme in steady flow problem[J]. ACTA AERODYNAMICA SINICA, 2001, 19(1): 75-82.

Catalog

    Article views (826) PDF downloads (540) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return