基于等Weber数的结冰外形修正

易贤, 郭龙, 周志宏, 杜雁霞, 朱国林

易贤, 郭龙, 周志宏, 杜雁霞, 朱国林. 基于等Weber数的结冰外形修正[J]. 空气动力学学报, 2016, 34(6): 697-703. DOI: 10.7638/kqdlxxb-2016.0039
引用本文: 易贤, 郭龙, 周志宏, 杜雁霞, 朱国林. 基于等Weber数的结冰外形修正[J]. 空气动力学学报, 2016, 34(6): 697-703. DOI: 10.7638/kqdlxxb-2016.0039
Yi Xian, Guo Long, Zhou Zhihong, Du Yanxia, Zhu Guolin. Ice shape modification based on constant Weber number[J]. ACTA AERODYNAMICA SINICA, 2016, 34(6): 697-703. DOI: 10.7638/kqdlxxb-2016.0039
Citation: Yi Xian, Guo Long, Zhou Zhihong, Du Yanxia, Zhu Guolin. Ice shape modification based on constant Weber number[J]. ACTA AERODYNAMICA SINICA, 2016, 34(6): 697-703. DOI: 10.7638/kqdlxxb-2016.0039

基于等Weber数的结冰外形修正

基金项目: 国家自然科学基金(11172314,11472296);国家重点基础研究发展计划(2015CB755800)
详细信息
    作者简介:

    易贤(1977-),男,四川省金堂县人,研究员,研究方向:飞机结冰.E-mail:yixian_2000@163.com

    通讯作者:

    周志宏(1981-),男,湖南涟源人,副研究员,研究方向:飞机结冰.E-mail:zzhng@163.com

  • 中图分类号: V211.3

Ice shape modification based on constant Weber number

  • 摘要: 由于设备条件的限制,在进行结冰风洞试验时,试验Weber数与目标Weber数往往存在差异,为了获得与目标Weber数对应的冰形,需要对试验结果进行修正。本文分析了进行Weber数修正的原因,提出了根据几何特征量进行结冰外形修正的方法,并以某超临界翼型为对象,对不同Weber条件下的结冰外形进行了仿真,研究了Weber数变化对结冰的影响规律,在此基础上开展了基于等Weber数的结冰外形修正。研究发现:(1)Weber数主要影响冰角特征,对水滴收集特性、结冰极限及驻点冰厚度影响较小;(2)存在一个敏感Weber数,低于敏感值时,Weber数变化对结冰影响不大,当Weber数高于敏感值时,Weber数变化对结冰有明显影响;(3)采用本文提出的冰形修正方法,能保证冰形的宏观轮廓与目标冰形一致,修正后的冰形能适量消除由于Weber数误差导致的冰形差异,提高试验的精度。
    Abstract: The Weber number in an icing wind tunnel test is often different from that of the real flight icing condition due to the limitation of facility capacity. In order to obtain consistent result of aimed Weber number, the test ice shape need to be modified. The reason of icing test data correction is analyzed in this paper. A method for ice shape modification based on the ice geometric features is proposed. The ice shape of a supercritical airfoil is simulated under the condition of different Weber number, and the effect of Weber number on icing is studied. Then the ice shape modification based on constant Weber number is carried out. It is found that:(1) The Weber number mainly affects ice horns, and has little influence on droplet collection, icing limit and thickness; (2) There is a sensitive value existed, as the Weber number changes smaller than the value ice varies little, while the Weber number is bigger than the value, ice will vary obviously according to the change of this Weber number; (3) The proposed ice modification method can guarantee the agreement between the modified and the target ice shape, so the ice shape differences caused by Weber number differences can be amount to eliminated, and the precision of test will be improved.
  • [1] Cebeci T, Kafyeke F. Aircraft icing[J]. Annual Review of Fluid Mechanics, 2003, 35: 11-21.
    [2] Bragg M B, Broeren A P, Blumenthal L A. Iced-airfoil aerodynamics[J]. Progress in Aerospace Sciences, 2005, 41(5): 323-362.
    [3] Soeder R H, Sheldon D W, Robert F S, et al. NASA Glenn icing research tunnel user manual[R]. NASA TM 2003-212004, 2003.
    [4] Ruff G A. Verification and application of the icing scaling equations[R]. AIAA 86-0481, 1986.
    [5] Anderson D N. Methods for scaling icing test conditions[R]. AIAA 95-0540, 1995.
    [6] Anderson D N. Manual of scaling method[R]. NASA CR 2004-212875, 2004.
    [7] Bilanin A J. Proposed modifications to ice accretion/icing scaling theory[J]. Journal of Aircraft, 1991, 28(6): 353-359.
    [8] Bilanin A J, Anderson D N. Ice accretion with varying surface tension[R]. AIAA 95-0538, 1995
    [9] Susan J M. Aircraft ice protection[R]//FAA Advisory Circular, No. 20-73A, 2006.
    [10] Yi X.Numerical computation of aircraft icing and study on icing test scaling law[D]. Mianyang: China Aerodynamics Research and Development Center, 2007. (in Chinese). 易贤. 飞机积冰的数值计算与积冰试验相似准则研究[D]. 绵阳: 中国空气动力研究与发展中心, 2007.
    [11] Yi X,Zhu G L, Gui Y W. Modification and evaluation of an icing scaling law[J]. Journal of Experimentals in Fluid Mechanics, 2008, 22(2): 84-87. (in Chinese) 易贤, 朱国林, 桂业伟. 一种改进的积冰试验相似准则及其评估[J]. 实验流体力学, 2008, 22(2): 84-87.
    [12] Ruff G A. Quantitative comparison of ice accretion shapes on airfoils[J]. Journal of Aircraft, 2002, 39(3): 418-426.
    [13] Anderson D N, Tsao J C. Ice shape scaling for aircraft in SLD conditions[R]. NASA CR 2008-215302, 2008.
    [14] Zhou Z H, Li F W, Li G N. Applying Eulerian droplet impingement model to numerically simulating ice accretion but with some improvements[J]. Journal of Northwestern Polytechnical University, 2010, 28(1): 138-142. 周志宏, 李凤蔚, 李广宁. 基于两相流欧拉方法的翼型结冰数值模拟[J]. 西北工业大学学报, 2010, 28(1): 138-142. [15Li H J. Neural network modeling and optimization of semi-solid extrusion for aluminum matrix composites[J]. Journal of Materials Processing Technology, 2004, 151(3): 126-132.
    [15] Saltelli A. Sensitivity analysis[M]. Chichester: Wiley, 2000.
  • 期刊类型引用(1)

    1. 胡琴,杨大川,蒋兴良,张石强,董静军. 叶片模拟冰对风力发电机功率特性影响的试验研究. 电工技术学报. 2020(22): 4807-4815 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  227
  • HTML全文浏览量:  8
  • PDF下载量:  464
  • 被引次数: 3
出版历程
  • 收稿日期:  2016-01-27
  • 修回日期:  2016-02-01
  • 网络出版日期:  2021-01-07
  • 刊出日期:  2016-12-24

目录

    /

    返回文章
    返回