留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2021年  第39卷  第5期

《空气动力学学报》2021年5期pdf合集
2021, (5): .
摘要(117) HTML (55) PDF(53)
摘要:
研究论文
低温风洞运行压比相关性研究及应用
黄知龙, 王宁, 廖达雄
2021, 39(5): 1-6. doi: 10.7638/kqdlxxb-2021.0020
摘要(149) HTML (77) PDF(22)
摘要:
低温风洞流场参数快速精确控制需要建立驱动风扇功率与马赫数、雷诺数、压力和温度等运行参数间准确动态传递模型。以0.3 m低温风洞初步运行压比和状态参数测试数据为对象,归纳分析发现风洞运行压比与试验马赫数平方成近似线性关系,且相同马赫数下测试数据点分布与雷诺数成有序关系,基于该特性成功构造马赫数和雷诺数组合幂函数,并建立风洞运行压比与组合幂函数的线性关联式。结果表明在马赫数小于1.0和宽广雷诺数变化范围下该动态模型与测试数据具有良好的一致性。同时,利用空气动力学方程式也推导验证了该动态模型的理论正确性。该动态模型的建立使得风洞运行液氮需求和压缩机功率以相对简单的方式与试验状态相关联,将其应用于风洞前馈控制,必将简化风洞控制流程,缩短每个数据点的稳定时间,节约液氮消耗量。
尾缘襟翼对扑翼的获能特性影响
周大明, 孙晓晶
2021, 39(5): 7-18. doi: 10.7638/kqdlxxb-2020.0083
摘要(154) HTML (36) PDF(28)
摘要:
扑翼获能器是一种模仿飞鸟振翅扑动的新型获能装置。为提高扑翼的获能效率,建立了一种带有尾缘襟翼的扑翼模型,且该种襟翼在扑翼运行过程中始终向翼型压力面偏转,利用计算流体力学方法求解了二维不可压缩非稳态Navier-Stokes方程。在雷诺数Re = 4.7×105的工况下,分析了尾缘襟翼对扑翼流场的作用机理,并与原始翼型扑翼进行了对比。同时,还研究了翼型厚度对具有尾缘襟翼扑翼获能的影响。结果表明:扑翼升沉力做功占其获能的主要部分,应用尾缘襟翼后,扑翼的升沉力在整个扑动周期内都得到了提高,并且升沉力与升沉速度的协同性获得改善;尾缘襟翼对扑翼获能效率的提高作用在高频率下效果最为明显,最多可以得到23.5%的相对提升;此外,翼型厚度影响着扑翼前缘涡的演化,翼型厚度增加,前缘涡的生成受到抑制,扑翼获能效率则随翼型厚度增大呈先增加后降低的规律,因此存在最佳翼型。
基于内嵌物理机理神经网络的热传导方程的正问题及逆问题求解
赵暾, 周宇, 程艳青, 钱炜祺
2021, 39(5): 19-26. doi: 10.7638/kqdlxxb-2020.0176
摘要(623) HTML (257) PDF(162)
摘要:
建立了一种基于内嵌物理机理神经网络(PINN)的热传导方程的正问题及逆问题求解方法。该方法利用自动微分技术将一维热传导方程嵌入到深度网络的损失函数中,通过以损失函数最小为目标来优化深度网络,求解一维热传导方程以及对方程中的未知导热系数进行辨识。随后,分析了基于PINN求解正问题的收敛精度以及参数辨识的鲁棒性,并得出以下结论:在给定网络结构的情况下,基于PINN求解一维热传导方程的收敛误差在样本点数较少时主要由采样误差主导,而当样本点数较多时,收敛误差由优化误差主导;由于损失函数中包含了方程相关的正则化项,以及采用了自动微分技术,因此,基于PINN的参数辨识方法噪声标签数据具有较强的鲁棒性。
基于OPTICS聚类算法的流场结构特征分析方法
王锐, 辛大波, 欧进萍
2021, 39(5): 27-43. doi: 10.7638/kqdlxxb-2021.0002
摘要(226) HTML (80) PDF(20)
摘要:
为了改进现有的基于聚类分析的流场结构特征分析方法,使之更加适用于结构风工程领域的风场特征识别与分析,依托聚类分析的思想,结合一种基于密度的OPTICS聚类算法,并引入相关距离的概念替换了原算法中的欧氏距离,提出了采用一种基于相关距离的OPTICS聚类算法进行流场结构特征分析。实例分析利用基于大涡模拟的计算流体动力学数值模拟,对低雷诺数下经典圆柱绕流问题进行了瞬态求解,获取了2000个圆柱尾流中顺流向涡的瞬态涡量场样本。然后,以识别圆柱尾流中的顺流向涡旋涡脱落状态和顺流向涡A模式展向分布为目标,对比了k-means、原始的OPTICS算法和基于相关距离的OPTICS聚类算法等流场结构特征分析方法。分析实例的结果表明,基于相关距离的OPTICS算法能够在合适的初始参数设置下有效识别顺流向涡脱落状态和其A模式展向分布间距,相对k-means算法降低了对初始参数的敏感度,聚类结果稳定且唯一。
轴流风扇动/静干涉噪声抑制的数值模拟与实验研究
牛晓飞, 王勋年, 李勇
2021, 39(5): 44-52. doi: 10.7638/kqdlxxb-2020.0145
摘要(244) HTML (81) PDF(39)
摘要:
动/静干涉噪声是风扇单音噪声的重要组成部分, 本文采用数值模拟与实验相结合的方式对某轴流冷却风扇转子与下游支柱之间干涉噪声的抑制进行了研究。数值计算采用大涡模拟(LES)与FW-H方程相结合的混合方法,噪声实验在全消声室中利用远场麦克风测量。通过改变支柱迎风面宽度(H)和壁面开槽(对应不同穿孔率SP)两种方式来改变风扇模型的流动工况,分析不同控制策略对风扇气流流动和远场噪声特性的影响。结果表明,在下游支柱的干扰作用下,轴流风扇压力面的平均静压在叶片中部呈现周期性的分布。随着支柱迎风面宽度H的减小和壁面槽穿孔率SP的增大,支柱上的平均静压和风扇压力面的RMS压力逐渐降低。两种控制策略均能够有效减弱涡及其涡/固干扰强度,从而降低风扇噪声。数值模拟与实验结果吻合较好,显示风扇叶片通过频率BPF处的最大降噪量在所研究的流动配置下可以达到5 dB以上。
内吹式襟翼控制机理和失速特性
张刘, 姜裕标, 何萌, 陈洪, 高立华
2021, 39(5): 53-62. doi: 10.7638/kqdlxxb-2021.0008
摘要(248) HTML (52) PDF(30)
摘要:
短距起降运输机对增升装置提出了更高要求,常规机械式增升装置已无法满足,内吹式襟翼系统是当今固定翼飞机最有效的动力增升形式。为推动该技术的工程应用,基于雷诺平均N-S方程,对某加装60°偏角无缝襟翼的亚声速翼型在环量控制作用下的流场进行数值模拟,研究了其在不同吹气动量系数下的气动特性及流动形态,分析了不同环量控制阶段增升机理、失速特性和吹气动量系数对失速特性影响规律。结果表明:内吹式襟翼增升控制效率(升力系数增量与吹气动量系数的比值)较高,在临界吹气动量系数下可达70,此时相较于无吹气状态,升力增加约125%;主翼上由于环量增加产生的升力增量是翼型升力增量的主要来源,约占总升力增量的78%;吹气动量系数增加可造成翼型气动中心后移;附面层分离控制区主要通过消除襟翼上的流动分离增加升力,超环量控制区升力的增加是由于尾缘下游的射流效应使流线进一步偏转而实现的;随吹气动量增加,附面层分离控制区的失速迎角提前,超环量控制区失速迎角略微推迟。
高超声速边界层基频二次失稳条纹结构的稳定性
李玲玉, 刘建新
2021, 39(5): 63-74. doi: 10.7638/kqdlxxb-2020.0122
摘要(115) HTML (34) PDF(15)
摘要:
近年来在高超声速边界层的直接数值模拟和静风洞实验研究中,相继发现了边界层转捩前出现的典型基频模态二次失稳现象,其主要成分为流向条纹结构。全文以高超声速平板边界层为研究对象,采用线性稳定性分析和二次稳定性分析的方法,对边界层内条纹结构的产生机制和无黏稳定性特征进行了研究。结果表明:首次失稳扰动幅值对二次失稳类型有影响。当首次失稳扰动幅值较大时,基频模态占主导,其主要成分为条纹结构,表现为流向涡。该条纹结构存在着多个无黏失稳模态,其中低频模态对应于第一模态在三维边界层内的扩展,高频模态对应于可压缩的第二模态。这一研究成果为进一步开展高超声速边界层转捩机制研究奠定了基础。
壁面辐射平衡DSMC方法及其在双锥构型中应用
金浩, 方明, 李埌全, 刘沙, 钟诚文
2021, 39(5): 75-81. doi: 10.7638/kqdlxxb-2020.0128
摘要(256) HTML (66) PDF(21)
摘要:
临近空间高超声速飞行器在高空长时间飞行,受气流加热影响,飞行器表面温度显著升高,依赖地面试验和传统DSMC仿真预测的热流值明显高于飞行观测值,导致飞行器防热系统的保守设计。本文发展了一种基于壁面辐射平衡的DSMC边界模型,通过热流值反算辐射平衡壁面温度,并以此温度作为下一个时间步DSMC计算的边界条件,迭代更新至给出壁面温度的收敛值。基于该温度边界条件,开发了适用于轴对称构型的DSMC求解器,并以钝锥构型对计算模型和求解器进行了验证。重点针对激波风洞试验条件下的双锥构型,开展数值模拟研究,结果表明:该构型恒温冷壁条件得到的壁面压力分布和热流与风洞试验结果吻合,两种温度条件下的压力峰值差异约为15.4%,但是整体气动力特性差异仅约为0.33%;相对于冷壁,辐射平衡计算得到的前缘处热流峰值降低约50%,再附点处的热流峰值降低约三分之二;两种条件相结合,可以给出壁面热流的预测范围。
高速列车空气动力学研究
“高速列车空气动力学研究”专栏简介
专栏组稿专家
2021, 39(5): 82-82.
摘要(172) HTML (58) PDF(17)
摘要:
高速列车空气动力学专栏
更高速(400+ km/h)列车气动减阻技术发展与展望
余以正, 刘堂红, 夏玉涛, 杨明智, 刘宏康
2021, 39(5): 83-94. doi: 10.7638/kqdlxxb-2021.0272
摘要(987) HTML (251) PDF(182)
摘要:
合理有效的气动减阻技术是我国研发运营速度400+ km/h高速列车的过程需展开深入研究的重点内容。首先阐述了高速列车气动阻力的基本分布特征,并针对国外下一代更高速列车的气动减阻技术进行了调研,尤其分析了欧洲、日本和韩国的下一代更高速列车气动减阻技术的特征,总结了国外下一代高速列车气动减阻的关键技术与方法。然后根据列车气动减阻技术实施部位的差异,从列车头型优化以及转向架、受电弓和风挡等局部结构优化两个方面对我国目前高速列车气动减阻技术研究现状进行了分析和梳理,同时归纳了新型气动减阻技术的研究现状。最后在综合国外下一代更高速列车气动减阻技术与我国气动减阻技术研究的基础上,对我国更高速(400+ km/h)列车气动减阻技术中可行性较高且效果明显的发展方向进行了展望与建议,为我国更高速列车气动减阻技术的设计与发展提供有价值的参考。
磁浮飞行风洞试验技术及应用需求分析
倪章松, 张军, 符澄, 王邦毅, 李宇
2021, 39(5): 95-110. doi: 10.7638/kqdlxxb-2021.0206
摘要(559) HTML (135) PDF(78)
摘要:
随着高速、超高速轨道交通的快速发展,需要发展新型的风洞设备,实现风洞性能和试验能力的突破。磁浮飞行风洞是利用真空管道列车概念结合动模型试验技术提出的一种新概念风洞设备,可以构建出更加接近真实状态的测试环境。本文从磁浮飞行风洞基本概念、国内外研究现状及发展趋势、试验技术、应用需求等几个方面开展论述。首先论述了国内外传统风洞和动模型设备的现状及发展趋势,指出了发展磁浮飞行风洞的必要性;其次,重点对磁浮飞行风洞需要发展的试验技术进行了分析;最后,对磁浮飞行风洞在超高速轨道交通及其他领域的应用需求进行了展望。
高速列车转向架区域气动噪声风洞实验研究
陈羽, 刘嘉楠, 杨志刚, 毛懋, 王毅刚
2021, 39(5): 111-119. doi: 10.7638/kqdlxxb-2021.0173
摘要(263) HTML (121) PDF(38)
摘要:
转向架区域是高速列车最主要的气动噪声源。通过风洞试验的方法,测量了1∶20转向架区域的舱内气动噪声和压力,分析了动车转向架、拖车转向架舱内气动噪声和脉动压力的速度标度律,及其随雷诺数的变化规律。结果表明:近场气动噪声标度律分析可以区分转向架舱内湍流脉动压力和声压,舱内湍流脉动压力能量随速度的3.2~3.9次方增加,声压级随速度的6~8次方增加,两者的分界线频率,转向架舱后壁高于舱顶部。气动噪声为具有多个峰值的宽频带噪声,频率不随雷诺数变化的峰值噪声由声共振导致,频率随雷诺数增加而增大的峰值噪声为气流冲击轮对下部导致。转向架区域的气动噪声的峰值频率与转向架舱、轮对尺寸有关,宽频带噪声受转向架形式影响。该研究结果可为理解转向架区域气动噪声源特性及降噪控制提供理论和数据支撑。
龙卷风环境对桥上运动列车瞬态气动特性影响
曾广志, 李志伟, 黄莎, 严冠章
2021, 39(5): 120-131. doi: 10.7638/kqdlxxb-2021.0140
摘要(175) HTML (86) PDF(45)
摘要:
为探究桥上运动列车穿越龙卷风风场时其周围瞬态流场的流动特性,通过数值方法开展了恶劣环境下的车桥耦合气动特性研究,以保障列车的运行安全。采用三维、不可压N-S方程和工程上应用广泛的k-ε湍流模型,以及滑移网格技术,对桥上运动列车沿不同横向中心间距和不同运行速度穿越龙卷风风场时,其表面压力分布及气动载荷变化情况进行了计算分析。结果表明:1)列车的表面压力系数随列车与龙卷风中心的横向间距增加而表现出减小的趋势,且背风侧的压力系数较之迎风侧更为显著;2)随列车沿纵向方向靠近风场中心,其附近的压力分布呈现由对称分布向非对称分布的变化趋势,而随列车穿越风场并远离龙卷风风场中心时,列车周围压力表现出与之靠近风场中心时反向对称的特点;3)随着列车与风场中心纵向距离的变化,其头车的气动载荷系数均表现出了双峰趋势特征,且尾峰的峰值较之头峰更为显著,并随着列车运行速度的降低,其气动载荷系数峰值随列车与风场中心横向间距的差异愈加明显。
沟槽微结构尺寸对高速列车横风特性影响研究
王业腾, 孙振旭, 鞠胜军, 王梦莹, 杨国伟
2021, 39(5): 132-141. doi: 10.7638/kqdlxxb-2021.0149
摘要(207) HTML (92) PDF(37)
摘要:
随着列车运行速度的不断提升,气动效应对列车运行安全性产生的影响越来越突出。目前针对高速列车横风效应的研究通常假定列车表面光滑,实际上列车表面是非光滑的,边界层内的流动特性有所不同。利用微结构进行非光滑表面设计的新型技术手段可能改善高速列车在横风条件下的气动性能。以在车顶加设矩形条带组的方式,对1∶25比例的列车模型进行局部非光滑设计;采用改进的延迟分离涡模拟(IDDES)方法对横风作用下光滑表面和粗糙表面的列车模型进行气动性能模拟。结果表明,与光滑模型相比,粗糙模型下的侧向力系数和倾覆力矩系数分别降低了3.71 %和10.56 %。选取条带的宽度、高度和长度为设计变量,基于正交试验设计方法设计不同的数值模拟方案,利用方差分析和极差的方法探索矩形条带几何参数与列车侧向力和倾覆力矩间的关系,给出条带外形设计的优选方案。本研究可为横风作用下如何提升高速列车的气动性能提供理论依据。
高速铁路全封闭声屏障列车压力波和微气压波数值模拟研究
何旭辉, 吉晓宇, 敬海泉, 葛辉凯, 张甲振
2021, 39(5): 142-150. doi: 10.7638/kqdlxxb-2020.0037
摘要(314) HTML (71) PDF(30)
摘要:
利用Fluent动网格技术,对高速列车通过圆形全封闭声屏障产生的压力波和出口微气压波开展数值模拟研究。研究结果表明:列车通过圆形全封闭声屏障时,声屏障壁面风压变化过程与压缩波和膨胀波的产生、传播及反射有关,压缩波传播到壁面测点时压力上升,膨胀波传播至壁面测点时,压力下降;在声屏障横截面上,靠近列车的测点压力极值大于远离列车的测点压力极值,最大差异量达到28%;声屏障壁面压力变化幅值、车头鼻尖压力最大值与车速的二次方近似呈正比关系;与隧道结构类似,列车以较高的速度通过声屏障时,将在声屏障出口产生微气压波,微气压波的极值随着到出口的距离增大而迅速降低,并与列车速度的三次方近似呈正比关系。
扩大斜切式缓冲结构对时速400 km铁路隧道口微气压波缓解研究
王田天, 胡冲, 龚彦峰, 杨明智, 熊小慧, 踪敬良, 陆意斌
2021, 39(5): 151-161. doi: 10.7638/kqdlxxb-2021.0101
摘要(357) HTML (83) PDF(41)
摘要:
针对时速400 km高铁隧道口的微气压波研究,建立了基于三维可压缩非定常N−S方程和RNG k-ε 双方程湍流模型的数值模拟方法,并通过动模型试验对计算方法进行了验证。文中分析了隧道长度、缓冲结构(带斜切的扩大段)长度和缓冲结构开孔数对微气压波的影响。研究结果表明:在一定隧道长度内,微气压波幅值随着隧道长度的增加逐渐增大;隧道口设置带斜切(30°)的等截面扩大段缓冲结构能有效缓解微气压波幅值,且随着缓冲结构的长度增加,微气压波幅值的缓解率先增大后减小,其中缓冲结构长88.56 m时缓解效果最佳,缓解率可达59.2%;该缓冲结构开孔后能进一步缓解微气压波幅值,缓冲结构开2个孔时的缓解效果最佳,缓解率可达70.9%。本文提出的缓冲结构能使得5 km及以下长度隧道的微气压波幅值达到国家规定标准,研究成果对时速400 km/h高速铁路隧道口缓冲结构的设计具有参考价值。
基于客流密度的地铁列车空调夏季送风温度控制模型研究
周新喜, 王宗昌, 陈垒, 张玉刚, 伍钒
2021, 39(5): 162-169. doi: 10.7638/kqdlxxb-2021.0104
摘要(294) HTML (108) PDF(40)
摘要:
客流密度是影响地铁列车客室内热舒适性环境的重要因素,传统的地铁列车客室温度控制主要是根据UIC-553标准,以室内外温差作为控制核心。本文通过构建全尺寸地铁列车客室-乘客-空调送风耦合的一体化模型,利用实车试验与数值模拟相结合的方法,对地铁列车客室内的热舒适性展开研究。探讨客流密度对地铁列车客室内热舒适环境的影响规律以及不同客流密度下客室平均温度与空调送风温度之间的关系,得到了不同客流密度下能满足人体热舒适性体验的空调送风温度,提出了一种基于客流密度的地铁列车空调夏季送风温度控制模型。
高速列车压力舒适性环境特征的实车试验研究
王志钧, 梅元贵
2021, 39(5): 170-180. doi: 10.7638/kqdlxxb-2021.0248
摘要(152) HTML (42) PDF(12)
摘要:
列车高速通过隧道过程中诱发了隧道内剧烈的压力波动,同时也引发了乘务人员和旅客的耳部不适感,由此产生了高速列车车内压力舒适性环境的问题。本文采用线路实车试验方法,获得了特定线路下350 km/h中国标准动车组通过隧道时车内外压力变化特征。以车内每1 s、3 s、10 s和60 s内最大压力变化量作为描述压力舒适性环境的参数变量,对其时间历程特征进行研究,开展了线路坡度、隧道长度、列车速度和“隧道群”对车内压力舒适性环境影响特征分析,并探讨了整车气密效率与车内人员耳部不适性的关系。研究结果为进一步认识高速列车压力舒适性环境及其设计与控制方法的研究提供了较好基础。
初始环境温度对真空管道高速列车气动特性的影响
周鹏, 张军, 李田, 张继业
2021, 39(5): 181-190. doi: 10.7638/kqdlxxb-2021.0161
摘要(200) HTML (95) PDF(22)
摘要:
伴随着激波、膨胀波等波系的综合作用,真空管道高速列车诱发的气动热效应十分明显。初始环境直接关系到管内列车气动性能的好坏,研究环境初始温度对真空管道高速列车气动特性的影响对未来真空管道列车运输系统的研发具有重要意义。在建立含动边界的准二维非定常数值计算模型的基础上,通过分子动理论描述气流物性变化,利用SST k-ω转捩模型预测层流-湍流的混合流动状态,结合动网格技术实现了管内列车的跨音速运动,研究了273.15 K、300 K、350 K、400 K的初始环境温度下列车的气动特性变化。结果表明,随着初始环境温度增大,整车阻力减小,尾流扰动区发展过程减缓而车前扰动区发展过程加快,整个流场扰动区长度变化不大;在不同初始环境温度下,尽管尾流伴随着涡流脱落,但其温度波动的主频很低,约为0.76 Hz,波动幅度不超过2 K。