张树海, 李沁, 张来平, 张涵信. 中国CFD史[J]. 空气动力学学报, 2016, 34(2): 157-174. DOI: 10.7638/kqdlxxb-2016.0001
引用本文: 张树海, 李沁, 张来平, 张涵信. 中国CFD史[J]. 空气动力学学报, 2016, 34(2): 157-174. DOI: 10.7638/kqdlxxb-2016.0001
Shuhai Zhang, Qin Li, Laiping Zhang, Hanxin Zhang. The History of CFD in China[J]. ACTA AERODYNAMICA SINICA, 2016, 34(2): 157-174. DOI: 10.7638/kqdlxxb-2016.0001
Citation: Shuhai Zhang, Qin Li, Laiping Zhang, Hanxin Zhang. The History of CFD in China[J]. ACTA AERODYNAMICA SINICA, 2016, 34(2): 157-174. DOI: 10.7638/kqdlxxb-2016.0001

中国CFD史

详细信息
    通讯作者:

    张树海

  • 中图分类号: V211.3

The History of CFD in China

More Information
    Corresponding author:

    Shuhai Zhang: 张树海

  • 摘要: 本文简要回顾了中国的CFD史,早在20世纪70年代,在钱学森教授的建议下,一些中国学者对计算流体动力学(CFD)这一新型学科产生了浓厚兴趣并开始研究。从那时起,中国的CFD逐渐发展繁荣起来,特别是从世纪之交,中国CFD非常活跃,为航空航天和其他民用领域做出了巨大贡献。在中国,特别注重CFD的研究与物理分析的结合。本文首先介绍了M5A的概念,它概括了中国CFD的主要研究领域;随后,介绍了设计格式的原则,以此原则为指导发展了一系列格式,比如NND格式、ENN格式和紧致格式。最近,发展了一系列高阶精度数值格式并应用于实际外形的复杂流动计算。再后,讨论了求解气动方程的网格尺寸准则。最后,回顾了如流动分离、流动拓扑结构和结构稳定性理论、旋涡沿其轴向演化和Hopf分叉理论、动导数和飞行稳定性等代表性工作。
    Abstract: The history of CFD (Computational Fluid Dynamics) in China is briefly reviewed in this paper. In 1970s, under the suggestion of Professor Hsue-ShenTsien, some scientists turned their research interests into a new field, Computational Fluid Dynamics. Since then, CFD has become more and more flourished in China. CFD in China has progressed vigorously in this century, and has made significant contributions to Chinese aeronautic/astronautic industry and other civil areas. In China, integrated study of CFD and physical analysis has been advocated since its early stage. In this paper, the concept of M5A, which contains the main research fields in CFD in China, was reviewed firstly, then the principles to design numerical schemes were introduced. Under the guidance of these principles, a series of numerical schemes were constructed, such as NND, ENN, compact schemes, and so on. Many high-order schemes were developed and applied recently to the complex flow fields over realistic configurations. The criterion of grid size for solving gas dynamic equations was discussed then. And finally, some typical and representative works on flow separation, the flow topology and structure stability, the evolution and Hopf bifurcation of vortex along its axis, the characteristics of dynamic derivatives, and flight stability were reviewed.
  • [1] Xu J H, Gu F Z. HLHL Prize, the selection board of Ho Leung Ho Lee foundation[M]. Beijing:China science & technology press, 1997.
    [2] Zhang H X. The exploration of the spatial oscillations in finite difference solutions for Navier-Stokes Shocks[J]. Acta Aerodynamica Sinica, 1984,1(1):12-19.(in Chinese)
    [3] Zhuang F G, Zhang H X. Review and prospect for computational aerodynamics[J]. Advances in Mechanics, 1983, 13:2-18.
    [4] Zhang H X, Zhang L P, Zhang S H, et al. Some recent progress of high-order methods on structured and unstructured grids in CARDC[C]//The eighth international conference on computational fluid dynamics, 7, 14-18, 2014, Chengdu, China.
    [5] Zhang H X. Non-oscillatory and non-free-parameter dissipation difference scheme[J]. Acta Aerodynamica Sinica, 1984,6(2):143-165.
    [6] Zhang H X, Zhuang F G. NND schemes and their applications to numerical simulation of two and three dimensional flow[J]. Advances in Applied Mechanics, 1991, 29:193-256.
    [7] Zhang H X, Shen M Y. Computational fluid dynamics-fundamentals and applications of finite difference methods[M]. Beijing National defense industry press, 2002.
    [8] Zhang L P. Numerical simulations for complex inviscid flow fields on unstructured grids and Cartesian/unstructured hybrid grids[D]. Mianyang:China Aerodynamics Research and Development Center, Ph.D. Thesis, 1996.
    [9] He G H. Third-order ENN scheme and its application to the calculation of complex hypersonic viscous flows[D]. Mianyang:China Aerodynamicscs Research and Development Center, Ph.D. Thesis, 1994.
    [10] Shen Q. Numerical simulation of three dimensional complex viscous hypersonic flow[D]. Mianyang:China Aerodynamicscs Research and Development Center, Ph.D. Thesis, 1991.
    [11] Deng X G. Numerical simulation of viscous complex supersonic flow interaction[D]. Mianyang:China Aerodynamicscs Research and Development Center, Ph.D. Thesis, 1991.
    [12] Zong W G, Deng X G, Zhang H X. Double weighted essentially nonoscillatory shock capturing schemes[J]. Acta Aerodynamica Sinica, 2003, 21(2):218-225.
    [13] Li Q. The difference schemes of high order accuracy, boundary processing methods and the numerical simulation on planar mixing layer[D]. Mianyang:China Aerodynamicscs Research and Development Center, Ph.D. Thesis, 2003.
    [14] Zhang L P, Zhao Z, Chang X H, He X. A 3D hybrid grid generation technique and multigrid/parallel algorithm based on anisotropic agglomeration approach[J]. Chinese Journal of Aeronautics, 2013, 26(1):47-62.
    [15] Heim E R. CFD wing/pylon/finned store mutual interference wind tunnel experiment[R]. Eglin Air Force Base, FL 32542-5000, February, 1991.
    [16] Shen M Y, Niu X L, Zhang Z B.The properties and applications of the generalized compact scheme satisfying the principle about suppression of the oscillations[J]. Chinese Journal of Applied Mechanics, 2003, 20:12-20. (in Chinese)
    [17] Zhang Z C, Li H D, Shen M Y. Space-time conservation schemes for 3-D Euler equations[C]//Proceeding seventh international symp on CFD. Beijing China, 1997:259-262.
    [18] Fu D X, Ma Y W. A high order accurate difference scheme for complex flow fields[J]. Journal of Computational Physics, 1997, 134:1-15.
    [19] Ma Y W, Fu D X. Fourth order accurate compact scheme with group velocity control[J]. Science in China, 2001, 44:1197-1204.
    [20] Deng X G, Mao M L, Liu H Y, et al. Developing high order linear and nonlinear schemes satisfying geometric conservation law[C]//The eighth international conference on computational fluid dynamics. 2014, Chengdu, China.
    [21] Deng X G, Maekawa H. Compact high-order accurate nonlinear schemes[J]. J. Comput. Phys., 1997, 130(1):77-91.
    [22] Deng X G, Zhang H X. Developing high-order weighted compact nonlinear schemes[J]. J. Comput. Phys., 2000, 165:22-44.
    [23] Zhang S H, Jiang S F, Shu C W. Development of nonlinear weighted compact schemes with increasingly higher order accuracy[J]. J. Comput. Phy., 2008, 227:7294-7321.
    [24] Liu X L, Zhang S H, Zhang H X et al. A new class of central compact schemes with spectral-like resolution I:Linear schemes[J]. J. Comput. Phys., 2013, 248:235-256.
    [25] Liu X L, Zhang S H, Zhang H X, et al. A new class of central compact schemes with spectral-like resolution II:Hybrid weighted nonlinear schemes[J]. J. Comput. Phys., 2015, 284:133-154.
    [26] Zhang S H, Jiang S F, Shu C W. Improvement of convergence to steady state solutions of Euler equations with the WENO schemes[J]. Journal of Scientific Computing, 2011, 47:216-238.
    [27] Zhang S H, Shu C W. A new smoothness indicator for the WENO schemes and its effect on the convergence to steady state solutions[J]. Journal of Scientific Computing, 2007, 31, Nos. 1/2:273-305.
    [28] Zhang L P, Liu W, He L X, Deng X G, Zhang H X. A class of hybrid DG/FV methods for conservation laws I:Basic formulation and one-dimensional systems[J]. J. Comput. Phys., 2012, 231:1081-1103.
    [29] Zhang L P, Liu W, He L X, et al. A class of hybrid DG/FV methods for conservation laws II:Two-dimensional Cases[J]. J. Comput. Phys., 2012, 231:1104-1120.
    [30] Zhang L P, Liu W, He L X, Deng X G, Zhang H X. A class of hybrid DG/FV methods for conservation laws III:Two-dimensional Euler equations[J]. Comm. Comput. Phy., 2012, 12(1):284-314.
    [31] Zhang L P, Liu W, He L X, et al. A class of DG/FV hybrid schemes for conservation law IV:2D viscous flows and implicit algorithm for steady cases[J]. Computers & Fluids, 2014, 97:110-125.
    [32] Zhang S H, Li H, Liu X L, et al. Classification and sound generation of two-dimensional interaction of two Taylor vortices[J]. Physics of Fluids, 2013, 25:056103.
    [33] Zhang S H, Jiang S F, Zhang Y T, et al. The mechanism of sound generation in the interaction between a shock wave and two counter rotating vortices[J]. Phys. Fluids. 2009, 21(7):076101.
    [34] Zhang S H, Zhang Y T, Shu C W. Interaction of an oblique shock wave with a pair of parallel vortices:Shock dynamics and mechanism of sound generation[J]. Phys. Fluids. 2006, 18(12):126101.
    [35] Zhang S H, Zhang Y T, Shu C W. Multistage interaction of a shock and a strong vortex[J]. Phys. Fluids. 2005, 17(11):116101.
    [36] Li X L, Fu D X, Ma Y W. Direct numerical simulation of compressible isotropic turbulence[J]. Science in China A, 2002, 45(11):1452-1460. (in Chinese)
    [37] Fu D X, Ma Y W, Zhang L B. Direct numerical simulation of transition and turbulence in compressible mixing layer[J]. Science in China A, 2000, 43(4):421-429.(in Chinese)
    [38] Gao H, Fu D X, Ma Y W, et al. Direct numerical simulation of supersonic boundary layer[J]. Chinese Physics Letter, 2005, 22(7):1709-1712. (in Chinese)
    [39] Li X L, Fu D X, Ma Y W. Direct numerical simulation of a spatially evolving supersonic turbulent boundary layer at Ma=6[J]. Chinese Physics Letters, 2006, 23(6):1519-1522.
    [40] Li X L, Fu D X, Ma Y W. Direct numerical simulation of hypersonic boundary-layer transition over a blunt cone[J]. AIAA Journal, 2008, 46(11):2899-2913.
    [41] Li X L, Fu D X, Ma Y W. Direct numerical simulation of hypersonic boundary layer transition over a blunt cone with a small angle of attack[J]. Physics of Fluids, 2010, 22:025105.
    [42] Li X L, Fu D X,Ma Y W, et al. Direct Numerical Simulation of Shock/Turbulent Boundary Layer Interaction in a Supersonic Compression Ramp[J]. Science China:Physics, Mechanics & Astronomy, 2010, 53(9):1651-1658.(in Chinese)
    [43] Zhang H X, Guo C, Zong W G. Problems about grid and high order schemes[J]. Acta Mechanica Sinica, 1999, 31(4):398-405.
    [44] Wang K C, Zhou H C, Hu H C, et al. Three-Dimensional Separated Flow Structure over Prolate Spheroids[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. 1990, 429:73-90.
    [45] Zhang H X. The separation criteria and flow behavior for three dimensional steady separation flow[J]. Acta Aerodynamica Sinica, 1985, 1(1):1-12. (in Chinese)
    [46] Zhang H X. The behavior of separation line for three dimensional steady viscous flow-based on boundary layer equations[J]. Acta Aerodyn. Sin, 1985, 4(1):1-8. (in Chinese)
    [47] Zhang H X. Crossflow topology of three dimensional separated flows and vortex motion[J]. Acta Aerodynamica Sinica, 1997, 15(1):1-12.(in Chinese)
    [48] Zhang H X, Guo Y J. Topological flow patterns on cross section perpendicular to surface of revolutionary body[J]. Acta Aerodynamica Sinica,2000, 18(1):1-13.
    [49] Li Z W, Numerical simulation for the complex hypersonic flow with shock waves, vortices and chemical action[D]. Mianyang:China Aerodynamicscs Research and Development Center, Ph.D. Thesis, 1994.
    [50] Guo Y J. Numerical/analysis investigation of hypersonic flowsover a blunt cone with and without spin[D]. Mianyang:China Aerodynamicscs Research and Development Center, Ph.D. Thesis. 1997.
    [51] Peixoto M M. On structural stability[J]. Annu. Math, 1959, 69:199-222.
    [52] Peixoto M M. Structural stability on two-dimensional manifolds[J]. Topology, 1962, 1:101-120.
    [53] Zhang H X, Ran Z. On the structure stability of the flows over slenders at angle of attack[J]. Acta Aerodynamica Sinica, 1997, 15(1):20-26.(in Chinese)
    [54] Ran Z. Structure stability analysis and numerical simulation of flows over slender cones[D]. Mianyang:China Aerodynamicscs Research and Development Center, Ph.D. Thesis. 1997.
    [55] Zhang H X. The evolution of nonlinear bifurcation of vortex along its axis[R]. Mianyang:China Aerodynamicscs Research and Development Center report. 1992.
    [56] Zhang H X. The topological analysis of subsonic and supersonic vortex[R]. Mianyang:China Aerodynamicscs Research and Development Center Report. 1994.
    [57] Chen J Q. Numerical simulation of supersonic combustion and vortex motion[D]. Mianyang:China Aerodynamicscs Research and Development Center, Ph.D. Thesis. 1995.
    [58] Zhang S H. Numerical simulation of vertical flows over delta wings and analysis of vortex motions[D]. Mianyang:China Aerodynamicscs Research and Development Center, Ph.D. Thesis. 1995.
    [59] Zhang S H, Zhang H X, Shu C W. Topological structure of shock induced vortex breakdown[J]. Journal of fluid mechanics. 2009, 639:343-372.
    [60] Zhang H X, Yuan X X, Liu W, et al. Physical analysis and numerical simulation for the dynamic behavior of vehicles in pitching oscillations or rocking motions[J]. Science in China Series E:Technological Sciences. 2007, 50:1-17.
  • 期刊类型引用(5)

    1. 蒋成义,肖素梅. 生成对抗网络在二维网格生成上的探索. 电脑与信息技术. 2024(03): 68-70 . 百度学术
    2. 王年华,鲁鹏,常兴华,张来平. 基于机器学习的非结构网格阵面推进生成技术初探. 力学学报. 2021(03): 740-751 . 百度学术
    3. 田奇,郭元,梁贤,李新亮. 自适应的高精度中心-WENO混合格式. 空气动力学学报. 2019(04): 541-545+577 . 本站查看
    4. 陈杰,赵磊. 高超声速流存在局部稀薄效应的一个判据及相应的流动特性. 空气动力学学报. 2018(01): 4-11 . 本站查看
    5. 夏令儒,孙首群,张松松. 基于CFD的堵漏夹具设计压力参数优化. 农业装备与车辆工程. 2018(03): 15-18 . 百度学术

    其他类型引用(15)

计量
  • 文章访问数:  470
  • HTML全文浏览量:  54
  • PDF下载量:  782
  • 被引次数: 20
出版历程
  • 收稿日期:  2015-12-14
  • 修回日期:  2016-01-09
  • 网络出版日期:  2021-01-07
  • 刊出日期:  2016-04-24

目录

    /

    返回文章
    返回