WU Y C, HE Y Y, WEI F, et al. Design of continuous streamline tracing waverider forebody inlet[J]. Acta Aerodynamica Sinica, 2022, 40(1): 114−118. DOI: 10.7638/kqdlxxb-2021.0144
Citation: WU Y C, HE Y Y, WEI F, et al. Design of continuous streamline tracing waverider forebody inlet[J]. Acta Aerodynamica Sinica, 2022, 40(1): 114−118. DOI: 10.7638/kqdlxxb-2021.0144

Design of continuous streamline tracing waverider forebody inlet

More Information
  • Received Date: July 28, 2021
  • Revised Date: October 07, 2021
  • Accepted Date: October 11, 2021
  • Available Online: December 27, 2021
  • A large amount of research work has been conducted on the design of high speed waveriders and engine inlets based on the streamline tracking method, but the integrated design of the forebody of hypersonic vehicles and the scramjet inlet has always been difficult. In order to improve the total pressure recovery and flow capture performance of the integrated forebody and inlet of hypersonic vehicles, the entire base flowfield is divided into a shock compression and an isentropic compression in sequence based on the methods of previous waverider forebody design and inlet compression surface streamline tracing, and a completely continuous streamline tracing is achieved connecting the forebody shockwave, the outer compression surface, the inner compression surface of the inlet, the reflection shockwaves and the inlet throat. The generation of the three-dimensional spanwise surface is controlled by a osculating method, which realizes the design of continuous stream surface. The longitudinal base flowfield is constructed by combining the shock compression flowfield generated by the cross-marching characteristic method with the isentropic compression flowfield generated by the reversed Prandtl-Meyer flow, which only requires constrains of the forebody shockwave shape and the inlet throat. All control lines are described by a kind of quartic spline curve. This is a unified method for the integrated forebody and inlet design of hypersonic vehicles based on reference flowfields of the internal and external cones. Its main advantages are that it has relatively higher flow capture and total pressure recovery coefficients and can be widely used in the integrated design of internal and external flow of hypersonic vehicles.
  • [1]
    NONWEILER T. Delta wings of shapes amenable to exact shock-wave theory[J]. The Journal of the Royal Aeronautical Society, 1963, 67(625): 39-40. DOI: 10.1017/s0368393100090027
    [2]
    MOLDER S. Internal, axisymmetric, conical flow[J]. AIAA Journal, 1967, 5(7): 1252-1255. DOI: 10.2514/3.4179
    [3]
    JONES K D, SOBIECZKY H, SEEBASS A R, et al. Waverider design for generalized shock geometries[J]. Journal of Spacecraft and Rockets, 1995, 32(6): 957-963. DOI: 10.2514/3.26715
    [4]
    SOBIECZKY H. Configurations with specified shock waves[M]//New Design Concepts for High Speed Air Transport. Vienna: Springer Vienna, 1997: 121-135. doi: 10.1007/978-3-7091-2658-5_8
    [5]
    SOBIECZKY H, ZORES B, WANG Z, et al. High speed flow design using osculating axisym-metric flows[C]//3rd Pacific International Conference on Aero-space Science and Technology. Xi’an, China, 1997: 182-187. http://www.sobieczky.at/aero/literature/H145.pdf
    [6]
    MOLDER S, SZPIRO E J. Busemann inlet for hypersonic speeds[J]. Journal of Spacecraft and Rockets, 1966, 3(8): 1303-1304. DOI: 10.2514/3.28649
    [7]
    尤延铖, 梁德旺, 黄国平. 一种新型内乘波式进气道初步研究[J]. 推进技术, 2006, 27(3): 252-256. doi: 10.3321/j.issn:1001-4055.2006.03.015

    YOU Y C, LIANG D W, HUANG G P. Investigation of internal waverider-derived hypersonic inlet[J]. Journal of Propulsion Technology, 2006, 27(3): 252-256. (in Chinese) doi: 10.3321/j.issn:1001-4055.2006.03.015
    [8]
    贺旭照, 倪鸿礼. 密切曲面锥乘波体: 设计方法与性能分析[J]. 力学学报, 2011, 43(6): 1077-1082. doi: 10.6052/0459-1879-2011-6-lxxb2010-502

    HE X Z, NI H L. Osculating curved cone(occ) waverider: design methods and performance analysis[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6): 1077-1082. (in Chinese) doi: 10.6052/0459-1879-2011-6-lxxb2010-502
    [9]
    贺旭照, 周正, 倪鸿礼. 密切内锥乘波前体进气道一体化设计和性能分析[J]. 推进技术, 2012, 33(4): 510-515.

    HE X Z, ZHOU Z, NI H L. Integrated design methods and performance analyses of osculating inward turning cone waverider forebody inlet(OICWI)[J]. Journal of Propulsion Technology, 2012, 33(4): 510-515. (in Chinese)
    [10]
    卫锋, 贺旭照, 贺元元, 等. 三维内转式进气道双激波基准流场的设计方法[J]. 推进技术, 2015, 36(3): 358-364.

    WEI F, HE X Z, HE Y Y, et al. Design method of dual-shock wave basic flow-field for inward turning inlet[J]. Journal of Propulsion Technology, 2015, 36(3): 358-364. (in Chinese)
    [11]
    李大进, 高雄, 朱守梅. 弯曲激波压缩曲面的二元高超声速进气道研究[J]. 推进技术, 2013, 34(11): 1441-1447.

    LI D J, GAO X, ZHU S M. Study of hypersonic 2D-inlet with leading curved-shock wave compression ramp[J]. Journal of Propulsion Technology, 2013, 34(11): 1441-1447. (in Chinese)
    [12]
    王磊, 张堃元, 金志光, 等. 基于壁面压力分布的二元高超声速弯曲激波压缩进气道反设计与优化方法[J]. 推进技术, 2013, 34(12): 1601-1605.

    WANG L, ZHANG K Y, JIN Z G, et al. Reverse design and optimization of 2D hypersonic curved shock compression inlet based on given wall pressure distribution[J]. Journal of Propulsion Technology, 2013, 34(12): 1601-1605. (in Chinese)
    [13]
    张堃元. 高超声速进气道曲面压缩技术综述[J]. 推进技术, 2018, 39(10): 2227-2235.

    ZHANG K Y. Review on curved surface compression technology of hypersonic inlet[J]. Journal of Propulsion Technology, 2018, 39(10): 2227-2235. (in Chinese)
    [14]
    吴颖川, 贺元元, 余安远, 等. 展向截断曲面乘波压缩进气道气动布局[J]. 航空动力学报, 2013, 28(7): 1570-1575.

    WU Y C, HE Y Y, YU A Y, et al. Aerodynamic layout of spanwise truncated curved waverider compression inlet[J]. Journal of Aerospace Power, 2013, 28(7): 1570-1575. (in Chinese)
    [15]
    ZUCROW M J, HOFFMAN JOE D. Gas dynamics, Volume 1[M]. John Wiley & Sons Inc. , 1976. ISBN-13: 978-0471984405.
    [16]
    ANDERSON JOHN D. Modern compressible flow: With historical perspective[M]. 1st Edition. McGraw-Hill, 1982. ISBN-13: ‎ 978-0070016545.
    [17]
    SOBIECZKY H. Generic supersonic and hypersonic configurations[C]//9th Applied Aerodynamics Conference, Baltimore, MD, USA. Reston, Virigina: AIAA, 1991. AIAA 91-3301-CP. http://www.sobieczky.at/aero/literature/H088.pdf doi: 10.2514/6.1991-3301
    [18]
    GRANDINE T A, HOGAN T A. A parametric quartic spline interpolant to position, tangent and curvature[J]. Computing, 2004, 72(1-2): 65-78. DOI: 10.1007/s00607-003-0047-x
  • Related Articles

    [1]HE Xuzhao, WEI Feng, LIU Fujun, CHEN Shengbing. Integrated design of minimal wave drag cone-derived waveriders and three-dimensional inward turning inlets[J]. ACTA AERODYNAMICA SINICA, 2022, 40(1): 77-83. DOI: 10.7638/kqdlxxb-2021.0375
    [2]CHEN Hong, LIU Litao, WU Chaojun. Inlet and jet test techniques for large scale model in 8m×6m Low Speed Wind Tunnel[J]. ACTA AERODYNAMICA SINICA, 2017, 35(6): 875-878. DOI: 10.7638/kqdlxxb-2015.0133
    [3]ZHANG Shengtao, CHEN Fang, LIU Hong. Fluid-thermal-structural coupling analysis on leading edge of hypersonic inlets[J]. ACTA AERODYNAMICA SINICA, 2017, 35(3): 436-443. DOI: 10.7638/kqdlxxb-2017.0036
    [4]Zhao Zhenshan, Ma Xiaoguang, Du Yu. Numerical simulation research of a Bump inlet flow control[J]. ACTA AERODYNAMICA SINICA, 2016, 34(4): 476-481. DOI: 10.7638/kqdlxxb-2014.0111
    [5]Ou Ping, Chen Qiang, Tian Xiaohu, Wu Junfei, Ma Handong, Qin Yongming, Zhang Jiang. The pumping system and precise mass flow measuring technique for double-inlet wind tunnel test[J]. ACTA AERODYNAMICA SINICA, 2016, 34(3): 392-397. DOI: 10.7638/kqdlxxb-2015.0118
    [6]Ma Xiaoguang, Cheng Yajun, Zhao Lyubo, Li Jiahong, Wang Xudong. Investigation of special test technique for inlet and engine matching of small-size propulsion system in high speed wind tunnels[J]. ACTA AERODYNAMICA SINICA, 2016, 34(3): 386-391. DOI: 10.7638/kqdlxxb-2015.0120
    [7]XU Jin, LUO Jinling, DAI Wuye, LI Chao. Effects of design parameters on hypersonic inward turning inlet and forebody[J]. ACTA AERODYNAMICA SINICA, 2014, 32(5): 646-653. DOI: 10.7638/kqdlxxb-2014.0044
    [8]ZHAO Huiyong, YI Miaorong. Review of design for forced-transition trip of hypersonic inlet[J]. ACTA AERODYNAMICA SINICA, 2014, 32(5): 623-627. DOI: 10.7638/kqdlxxb-2014.0095
    [9]YU Xin-hua. Design and aerodynamic performance of a M shaped inlet on flying wing UAV[J]. ACTA AERODYNAMICA SINICA, 2013, 31(5): 629-634. DOI: 10.7638/kqdlxxb-2012.0009
    [10]LIU Ji-min, HOU Zhi-qiang, SONG Gui-bao, LV Zhi-biao. Conceptual design and optimization for forebody/inlet of hypersonic cruise missiles[J]. ACTA AERODYNAMICA SINICA, 2013, 31(3): 321-325.
  • Cited by

    Periodical cited type(4)

    1. 王刚,张帅,宋晓啸,张继发,郑耀. 基于二次本构关系修正湍流模型的曲面乘波进气道性能分析. 推进技术. 2025(02): 30-45 .
    2. 许耀宇,黄河峡,谭慧俊,蔡佳,刘梦莹,王磊,满延进,李宏东. 高超声速飞行器前体/进气道一体化气动设计回顾与展望. 空天技术. 2024(02): 15-38 .
    3. Tianyu Gong,Yaosong Long,Zhongtao Cheng,Yiqing Li. Recent development of integrated design and improving methods of waverider and inlet. Advances in Aerodynamics. 2024(04): 5-28 .
    4. 孙宗祥,罗月培,李文佳,郭楚微. 美国高超声速武器发展路线简析. 战术导弹技术. 2023(03): 1-10 .

    Other cited types(2)

Catalog

    Article views (373) PDF downloads (79) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return