Citation: | WU Y C, HE Y Y, WEI F, et al. Design of continuous streamline tracing waverider forebody inlet[J]. Acta Aerodynamica Sinica, 2022, 40(1): 114−118. DOI: 10.7638/kqdlxxb-2021.0144 |
[1] |
NONWEILER T. Delta wings of shapes amenable to exact shock-wave theory[J]. The Journal of the Royal Aeronautical Society, 1963, 67(625): 39-40. DOI: 10.1017/s0368393100090027
|
[2] |
MOLDER S. Internal, axisymmetric, conical flow[J]. AIAA Journal, 1967, 5(7): 1252-1255. DOI: 10.2514/3.4179
|
[3] |
JONES K D, SOBIECZKY H, SEEBASS A R, et al. Waverider design for generalized shock geometries[J]. Journal of Spacecraft and Rockets, 1995, 32(6): 957-963. DOI: 10.2514/3.26715
|
[4] |
SOBIECZKY H. Configurations with specified shock waves[M]//New Design Concepts for High Speed Air Transport. Vienna: Springer Vienna, 1997: 121-135. doi: 10.1007/978-3-7091-2658-5_8
|
[5] |
SOBIECZKY H, ZORES B, WANG Z, et al. High speed flow design using osculating axisym-metric flows[C]//3rd Pacific International Conference on Aero-space Science and Technology. Xi’an, China, 1997: 182-187. http://www.sobieczky.at/aero/literature/H145.pdf
|
[6] |
MOLDER S, SZPIRO E J. Busemann inlet for hypersonic speeds[J]. Journal of Spacecraft and Rockets, 1966, 3(8): 1303-1304. DOI: 10.2514/3.28649
|
[7] |
尤延铖, 梁德旺, 黄国平. 一种新型内乘波式进气道初步研究[J]. 推进技术, 2006, 27(3): 252-256. doi: 10.3321/j.issn:1001-4055.2006.03.015
YOU Y C, LIANG D W, HUANG G P. Investigation of internal waverider-derived hypersonic inlet[J]. Journal of Propulsion Technology, 2006, 27(3): 252-256. (in Chinese) doi: 10.3321/j.issn:1001-4055.2006.03.015
|
[8] |
贺旭照, 倪鸿礼. 密切曲面锥乘波体: 设计方法与性能分析[J]. 力学学报, 2011, 43(6): 1077-1082. doi: 10.6052/0459-1879-2011-6-lxxb2010-502
HE X Z, NI H L. Osculating curved cone(occ) waverider: design methods and performance analysis[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6): 1077-1082. (in Chinese) doi: 10.6052/0459-1879-2011-6-lxxb2010-502
|
[9] |
贺旭照, 周正, 倪鸿礼. 密切内锥乘波前体进气道一体化设计和性能分析[J]. 推进技术, 2012, 33(4): 510-515.
HE X Z, ZHOU Z, NI H L. Integrated design methods and performance analyses of osculating inward turning cone waverider forebody inlet(OICWI)[J]. Journal of Propulsion Technology, 2012, 33(4): 510-515. (in Chinese)
|
[10] |
卫锋, 贺旭照, 贺元元, 等. 三维内转式进气道双激波基准流场的设计方法[J]. 推进技术, 2015, 36(3): 358-364.
WEI F, HE X Z, HE Y Y, et al. Design method of dual-shock wave basic flow-field for inward turning inlet[J]. Journal of Propulsion Technology, 2015, 36(3): 358-364. (in Chinese)
|
[11] |
李大进, 高雄, 朱守梅. 弯曲激波压缩曲面的二元高超声速进气道研究[J]. 推进技术, 2013, 34(11): 1441-1447.
LI D J, GAO X, ZHU S M. Study of hypersonic 2D-inlet with leading curved-shock wave compression ramp[J]. Journal of Propulsion Technology, 2013, 34(11): 1441-1447. (in Chinese)
|
[12] |
王磊, 张堃元, 金志光, 等. 基于壁面压力分布的二元高超声速弯曲激波压缩进气道反设计与优化方法[J]. 推进技术, 2013, 34(12): 1601-1605.
WANG L, ZHANG K Y, JIN Z G, et al. Reverse design and optimization of 2D hypersonic curved shock compression inlet based on given wall pressure distribution[J]. Journal of Propulsion Technology, 2013, 34(12): 1601-1605. (in Chinese)
|
[13] |
张堃元. 高超声速进气道曲面压缩技术综述[J]. 推进技术, 2018, 39(10): 2227-2235.
ZHANG K Y. Review on curved surface compression technology of hypersonic inlet[J]. Journal of Propulsion Technology, 2018, 39(10): 2227-2235. (in Chinese)
|
[14] |
吴颖川, 贺元元, 余安远, 等. 展向截断曲面乘波压缩进气道气动布局[J]. 航空动力学报, 2013, 28(7): 1570-1575.
WU Y C, HE Y Y, YU A Y, et al. Aerodynamic layout of spanwise truncated curved waverider compression inlet[J]. Journal of Aerospace Power, 2013, 28(7): 1570-1575. (in Chinese)
|
[15] |
ZUCROW M J, HOFFMAN JOE D. Gas dynamics, Volume 1[M]. John Wiley & Sons Inc. , 1976. ISBN-13: 978-0471984405.
|
[16] |
ANDERSON JOHN D. Modern compressible flow: With historical perspective[M]. 1st Edition. McGraw-Hill, 1982. ISBN-13: 978-0070016545.
|
[17] |
SOBIECZKY H. Generic supersonic and hypersonic configurations[C]//9th Applied Aerodynamics Conference, Baltimore, MD, USA. Reston, Virigina: AIAA, 1991. AIAA 91-3301-CP. http://www.sobieczky.at/aero/literature/H088.pdf doi: 10.2514/6.1991-3301
|
[18] |
GRANDINE T A, HOGAN T A. A parametric quartic spline interpolant to position, tangent and curvature[J]. Computing, 2004, 72(1-2): 65-78. DOI: 10.1007/s00607-003-0047-x
|