YANG Y T. Two-dimensional direct numerical simulations of fingering double diffusive convection turbulence[J]. Acta Aerodynamica Sinica, 2022, 40(2): 182−187, 207. DOI: 10.7638/kqdlxxb-2021.0365
Citation: YANG Y T. Two-dimensional direct numerical simulations of fingering double diffusive convection turbulence[J]. Acta Aerodynamica Sinica, 2022, 40(2): 182−187, 207. DOI: 10.7638/kqdlxxb-2021.0365

Two-dimensional direct numerical simulations of fingering double diffusive convection turbulence

More Information
  • Received Date: November 11, 2021
  • Revised Date: January 27, 2022
  • Accepted Date: February 07, 2022
  • Available Online: February 28, 2022
  • Double diffusive convection in the fingering regime is a commonly observed phenomenon in the (sub-)tropic ocean. It often happens when both temperature and salinity decrease with depth in the upper water, and plays a significant role in the vertical mixing and transport of heat and salt. In this study, we conduct two-dimensional direct numerical simulations of oceanic double diffusive convection in the fingering regime for four different combinations of component properties. We focus on the transport behaviors and flow structures, and their dependences on the control parameters, especially the influences of the Prandtl and Schmidt numbers. Results suggest that the overall trends of the dependences of heat and salt Nusselt numbers and Reynolds number on the Rayleigh number do not change for different density ratio, but their absolute values decrease as the density ratio becomes larger. This influence of density ratio becomes weaker as the Lewis number, i.e., the ratio between the two diffusivities increases. The dependences can be described by power-law scalings. For most of cases, the dominant structures are slender salt fingers. For several cases with small Lewis number and large Rayleigh number, the dominant structures change to large rolls which is similar to the convection turbulence. The dependence of finger width on Rayleigh number matches the prediction of linear stability analysis. All these findings provide useful information for understanding oceanic double diffusive convection, and extending the experimental and numerical findings to real actual problems.
  • [1]
    YOU Y Z. A global ocean climatological atlas of the Turner angle: implications for double-diffusion and water-mass structure[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2002, 49(11): 2075-2093.
    [2]
    TIMMERMANS M L, MARSHALL J. Understanding Arctic Ocean circulation: a review of ocean dynamics in a changing climate[J]. Journal of Geophysical Research: Oceans, 2020, 125(4): e2018JC014378. DOI: 10.1029/2018jc014378
    [3]
    SCHMITT R W, LEDWELL J R, MONTGOMERY E T, et al. Enhanced diapycnal mixing by salt fingers in the thermocline of the tropical Atlantic[J]. Science, 2005, 308(5722): 685-688. DOI: 10.1126/science.1108678
    [4]
    TIMMERMANS M L, TOOLE J, KRISHFIELD R, et al. Ice-Tethered Profiler observations of the double-diffusive staircase in the Canada Basin thermocline[J]. Journal of Geophysical Research Atmospheres, 2008, 113: C00A02. DOI: 10.1029/2008jc004829
    [5]
    ROSEVEAR M G, GAYEN B, GALTON-FENZI B K. The role of double-diffusive convection in basal melting of Antarctic ice shelves[J]. PNAS, 2021, 118(6): e2007541118. DOI: 10.1073/pnas.2007541118
    [6]
    STERN M E. The “salt-fountain” and thermohaline convection[J]. Tellus, 1960, 12(2): 172-175. DOI: 10.3402/tellusa.v12i2.9378
    [7]
    KUNZE E. A review of oceanic salt-fingering theory[J]. Progress in Oceanography, 2003, 56(3-4): 399-417. DOI: 10.1016/S0079-6611(03)00027-2
    [8]
    SCHMITT R W. Observational and laboratory insights into salt finger convection[J]. Progress in Oceanography, 2003, 56(3-4): 419-433. DOI: 10.1016/S0079-6611(03)00033-8
    [9]
    YOSHIDA J, NAGASHIMA H. Numerical experiments on salt-finger convection[J]. Progress in Oceanography, 2003, 56(3-4): 435-459. DOI: 10.1016/S0079-6611(03)00032-6
    [10]
    KRISHNAMURTI R. Double-diffusive transport in laboratory thermohaline staircases[J]. Journal of Fluid Mechanics, 2003, 483: 287-314. DOI: 10.1017/s0022112003004166
    [11]
    FERNANDES A M, KRISHNAMURTI R. Salt finger fluxes in a laminar shear flow[J]. Journal of Fluid Mechanics, 2010, 658: 148-165. DOI: 10.1017/s0022112010001588
    [12]
    HAGE E, TILGNER A. High Rayleigh number convection with double diffusive fingers[J]. Physics of Fluids, 2010, 22(7): 076603. DOI: 10.1063/1.3464158
    [13]
    KELLNER M, TILGNER A. Transition to finger convection in double-diffusive convection[J]. Physics of Fluids, 2014, 26(9): 094103. DOI: 10.1063/1.4895844
    [14]
    STELLMACH S, TRAXLER A, GARAUD P, et al. Dynamics of fingering convection. part 2 the formation of thermohaline staircases[J]. Journal of Fluid Mechanics, 2011, 677: 554-571. DOI: 10.1017/jfm.2011.99
    [15]
    PAPARELLA F, VON HARDENBERG J. Clustering of salt fingers in double-diffusive convection leads to staircaselike stratification[J]. Physical Review Letters, 2012, 109: 014502. DOI: 10.1103/physrevlett.109.014502
    [16]
    OSTILLA-MONICO R, YANG Y T, VAN DER POEL E P, et al. A multiple-resolution strategy for Direct Numerical Simulation of scalar turbulence[J]. Journal of Computational Physics, 2015, 301: 308-321. DOI: 10.1016/j.jcp.2015.08.031
    [17]
    YANG Y T, VAN DER POEL E P, OSTILLA-MÓNICO R, et al. Salinity transfer in bounded double diffusive convection[J]. Journal of Fluid Mechanics, 2015, 768: 476-491. DOI: 10.1017/jfm.2015.93
    [18]
    YANG Y T, VERZICCO R, LOHSE D. Scaling laws and flow structures of double diffusive convection in the finger regime[J]. Journal of Fluid Mechanics, 2016, 802: 667-689. DOI: 10.1017/jfm.2016.484
    [19]
    YANG Y T. Double diffusive convection in the finger regime for different Prandtl and Schmidt numbers[J]. Acta Mechanica Sinica, 2020, 36(4): 797-804. DOI: 10.1007/s10409-020-00973-0
    [20]
    YANG Y, CHEN W, VERZICCO R, et al. Multiple states and transport properties of double-diffusive convection turbulence[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(26): 14676-14681. DOI: 10.1073/pnas.2005669117
  • Related Articles

    [1]XUN Weikang, YANG Yantao. Numerical simulation of the stably stratified thermohaline flow with horizontal shear[J]. ACTA AERODYNAMICA SINICA, 2025, 43(6): 120-130. DOI: 10.7638/kqdlxxb-2025.0007
    [2]ZHAO Zehao, ZHANG Jinlong, DONG Yuhong. Heat transfer models for porous media in porous-walled turbulent flows[J]. ACTA AERODYNAMICA SINICA, 2024, 42(1): 45-54. DOI: 10.7638/kqdlxxb-2023.0084
    [3]LI Shilong, YANG Xiaolei, YUAN Xianxu, GUO Qilong. Numerical study on the orientation effects of roughness elements on turbulence statistics[J]. ACTA AERODYNAMICA SINICA, 2023, 41(4): 73-83. DOI: 10.7638/kqdlxxb-2022.0108
    [4]LIU Miaomiao, WANG Qi, WAN Zhenhua, SUN Dejun. Effect of sidewall thermal conductivity on Rayleigh-Bénard convection: a numerical study[J]. ACTA AERODYNAMICA SINICA, 2022, 40(2): 165-173. DOI: 10.7638/kqdlxxb-2021.0320
    [5]CAO Guiyu, PAN Liang, XU Kun. High-order gas-kinetic scheme for numerical simulation of turbulence[J]. ACTA AERODYNAMICA SINICA, 2021, 39(1): 168-176. DOI: 10.7638/kqdlxxb-2020.0156
    [6]WU Zhengyuan, MO Fan, GAO Zhenxun, JIANG Chongwen, LEE Chunhian. Direct numerical simulation of turbulent and high-temperature gas effect coupled flow[J]. ACTA AERODYNAMICA SINICA, 2020, 38(6): 1111-1119,1128. DOI: 10.7638/kqdlxxb-2020.0132
    [7]XIAO Hualin, LUO Kun, WANG Haiou, JIN Tai, FAN Jianren. Direct numerical simulations of swirling premixed flames in model annular combustors based on different Karlovitz numbers[J]. ACTA AERODYNAMICA SINICA, 2020, 38(3): 611-618. DOI: 10.7638/kqdlxxb-2020.0054
    [8]ZHANG Shuhai, LI Hu, WANG Yimin. Numerical study for complex multi-scale flow with shock, vortex and sound wave[J]. ACTA AERODYNAMICA SINICA, 2018, 36(3): 449-462. DOI: 10.7638/kqdlxxb-2017.0135
    [9]Zhu Haitao, Shan Peng. Direct numerical simulation of by-pass transition of the supersonic flat plate turbulent boundary layer[J]. ACTA AERODYNAMICA SINICA, 2015, 33(3): 345-352. DOI: 10.7638/kqdlxxb-2013.0083
    [10]白俊强, 李鑫, 华俊, 王昆. 过冷大水滴情况下的积冰数值模拟[J]. ACTA AERODYNAMICA SINICA, 2013, 31(6): 801-811.
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

Catalog

    Article views (323) PDF downloads (52) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return