LI K D, SUN X J. Comparative analyses of unseady flow fields around wind turbine airfoil S809 using POD and DMD[J]. Acta Aerodynamica Sinica, 2024, 42(3): 55−68. DOI: 10.7638/kqdlxxb-2023.0022
Citation: LI K D, SUN X J. Comparative analyses of unseady flow fields around wind turbine airfoil S809 using POD and DMD[J]. Acta Aerodynamica Sinica, 2024, 42(3): 55−68. DOI: 10.7638/kqdlxxb-2023.0022

Comparative analyses of unseady flow fields around wind turbine airfoil S809 using POD and DMD

More Information
  • Received Date: February 26, 2023
  • Revised Date: May 10, 2023
  • Accepted Date: May 28, 2023
  • Available Online: June 14, 2023
  • Published Date: June 14, 2023
  • The flow separation remarkbaly undermines wind turbines' aerodynamic performance thus requires. In order to develop flow control strategies, fundelmental research on the unsteady flow separation is abosutely necessary, and the Reduced-Order Model (ROM) methods offers a tool. In this paper, the unsteady flow fields around S809, a typical horizontal axis wind turbine airfoil, at deep and shallow stall angles of attack are obtained numerically and further analyzed by proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD). Results show that POD and DMD can accurately capture the unsteady flow structures and dominant modes, but the former, based on magnitude of energy, ignores the flow structure with similar lift main frequency but less energy. DMD can accurately capture the flow field evolution (rate of increase, frequency, etc.) and develop targeted flow control strategies for the dominant frequency structure, offering the airfoil flow field conditions and aerodynamic performance.

  • [1]
    CAI M L, WANG Y X, JIAO Z X, et al. Review of fluid and control technology of hydraulic wind turbines[J]. Frontiers of Mechanical Engineering, 2017, 12(3): 312-320. DOI: 10.1007/s11465-017-0433-2
    [2]
    ABOELEZZ A, GHALI H, ELBAYOMI G, et al. A novel VAWT passive flow control numerical and experimental investigations: Guided vane airfoil wind turbine[J]. Ocean Engineering, 2022, 257: 111704. DOI: 10.1016/j.oceaneng.2022.111704
    [3]
    SUN X, HUANG D, WU G. The Current state of offshore wind energy technology development[J]. Energy, 2012, 41(1): 298-312. DOI: 10.1016/j.energy.2012.02.054
    [4]
    SUN X J, XU Y Q, HUANG D G. Numerical simulation and research on improving aerodynamic performance of vertical axis wind turbine by co-flow jet[J]. Journal of Renewable and Sustainable Energy, 2019, 11(1): 013303. DOI: 10.1063/1.5052378
    [5]
    NOACK B R, AFANASIEV K, MORZYŃSKI M, et al. A hierarchy of low-dimensional models for the transient and post-transient cylinder wake[J]. Journal of Fluid Mechanics, 2003, 497: 335-363. DOI: 10.1017/s0022112003006694
    [6]
    SCHMID P J. Dynamic mode decomposition of numerical and experimental data[J]. Journal of Fluid Mechanics, 2010, 656: 5-28. DOI: 10.1017/s0022112010001217
    [7]
    LUMLEY J L. The structure of inhomogeneous turbulent flows[M]//YAGLOM A M, TARTARSKY V I, Eds. Atmospheric Turbulence and Radio Wave Propagation, 1967: 166-177.
    [8]
    SIROVICH L. Turbulence and the dynamics of coherent structures. I. Coherent structures[J]. Quarterly of Applied Mathematics, 1987, 45(3): 561-571. DOI: 10.1090/qam/910462
    [9]
    SHI L L, LIU Y Z, WAN J J. Influence of wall proximity on characteristics of wake behind a square cylinder: PIV measurements and POD analysis[J]. Experimental Thermal and Fluid Science, 2010, 34(1): 28-36. DOI: 10.1016/j.expthermflusci.2009.08.008
    [10]
    SUFYAN M, FAROOQ H, AKHTAR I, et al. Pressure mode decomposition analysis of the flow past a cross-flow oscillating circular cylinder[J]. Journal of Mechanical Science and Technology, 2021, 35(1): 153-158. DOI: 10.1007/s12206-020-1214-0
    [11]
    NANKAI K, OZAWA Y, NONOMURA T, et al. Linear reduced-order model based on PIV data of flow field around airfoil[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2019, 62(4): 227-235. DOI: 10.2322/tjsass.62.227
    [12]
    王燕, 程杰, 贾安, 等. 基于本征正交分解的水平轴风力机非定常尾迹特性分析[J]. 农业工程学报, 2022, 38(7): 69-77. doi: 10.11975/j.issn.1002-6819.2022.07.008

    WANG Y, CHENG J, JIA A, et al. Unsteady wake analysis of horizontal wind turbine using proper orthogonal decomposition[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(7): 69-77. (in Chinese) doi: 10.11975/j.issn.1002-6819.2022.07.008
    [13]
    刘强, 罗振兵, 邓雄, 等. 基于POD方法的合成双射流流场模态分析[J]. 空气动力学学报, 2020, 38(6)1027-1033. DOI: 10.7638/kqdlxxb-2018.0232

    LIU Q, LUO Z B, DENG X, et al. Modal analysis of dual syntehtic jets based on POD method[J]. Acta Aerodynamica Sinica, 2020, 38(6)1027-1033. (in Chinese) doi: 10.7638/kqdlxxb-2018.0232
    [14]
    DUNNE R, MCKEON B J. Dynamic stall on a pitching and surging airfoil[J]. Experiments in Fluids, 2015, 56(8): 157. DOI: 10.1007/s00348-015-2028-1
    [15]
    胡万林, 于剑, 刘宏康, 等. 圆弧翼型跨声速流动的动态模态分析[J]. 北京航空航天大学学报, 2019, 45(5)1026-1032. DOI: 10.13700/j.bh.1001-5965.2018.0468

    HU W L, YU J, LIU H K, et al. Dynamic modal analysis of circular-arc airfoil transonic flow[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(5)1026-1032. (in Chinese) doi: 10.13700/j.bh.1001-5965.2018.0468
    [16]
    寇家庆, 张伟伟. 动力学模态分解及其在流体力学中的应用[J]. 空气动力学学报, 2018, 36(2)163-179

    KOU J Q, ZHANG W W. Dynamic mode decomposition and its applications in fluid dynamics[J]. Acta Aerodynamica Sinica, 2018, 36(2)163-179. (in Chinese)DOI: 10.7638/kqdlxxb-2015.0210
    [17]
    WAN Z H, ZHOU L, WANG B F, et al. Dynamic mode decomposition of forced spatially developed transitional jets[J]. European Journal of Mechanics - B/Fluids, 2015, 51: 16-26. DOI: 10.1016/j.euromechflu.2014.12.001
    [18]
    寇家庆, 张伟伟, 高传强. 基于POD和DMD方法的跨声速抖振模态分析[J]. 航空学报, 2016, 37(9): 2679-2689.

    KOU J Q, ZHANG W W, GAO C Q. Modal analysis of transonic buffet based on POD and DMD method[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9): 2679-2689. (in Chinese)
    [19]
    ROWLEY C W, MEZIĆ I, BAGHERI S, et al. Spectral analysis of nonlinear flows[J]. Journal of Fluid Mechanics, 2009, 641: 115-127. DOI: 10.1017/s0022112009992059
    [20]
    BAGHERI S. Analysis and control of transitional shear flows using global modes[D]. KTH Royal Institute of Technology, 2010. http://kth.diva-portal.org/smash/get/diva2:288180/FULLTEXT02
    [21]
    尹光. 湍流场动力模态分析[D]. 北京: 清华大学, 2013.
    [22]
    RAMSAY R F, HOFFMAN M J, GREGOREK G M. Effects of grit roughness and pitch oscillations on the S809 airfoil[R]. NREL/TP-442-7817, 1995. https://www.osti.gov/servlets/purl/205563 doi: 10.2172/205563.
    [23]
    孙翀, 石磊, 沈昕, 等. 风力机翼型在失速工况下非定常流场的本征正交分解分析[J]. 工程热物理学报, 2021, 42(4): 894-904.

    SUN C, SHI L, SHEN X, et al. Analysis of POD for the flow field of the wind turbine airfoil at high angle of attack[J]. Journal of Engineering Thermophysics, 2021, 42(4): 894-904. (in Chinese)
    [24]
    JOVANOVIĆ M R, SCHMID P J, NICHOLS J W. Sparsity-promoting dynamic mode decomposition[J]. Physics of Fluids, 2014, 26(2): 024103. DOI: 10.1063/1.4863670
    [25]
    潘翀, 陈皇, 王晋军. 复杂流场的动力学模态分解[C]//第八届全国实验流体力学学术会议论文集, 北京, 2010.
    [26]
    CHEN K K, TU J H, ROWLEY C W. Variants of dynamic mode decomposition: boundary condition, Koopman, and Fourier analyses[J]. Journal of Nonlinear Science, 2012, 22(6): 887-915. http://cwrowley.princeton.edu/papers/ChenDMD10.pdf DOI: 10.1007/s00332-012-9130-9
  • Related Articles

    [1]ZENG Yangyang, ZENG Cong, ZHAO Guoqing, LI Chunhua, ZHAO Qijun. Mode decomposition and reconstruction of dynamic stall flow field of an elliptic airfoil[J]. ACTA AERODYNAMICA SINICA. DOI: 10.7638/kqdlxxb-2024.0209
    [2]ZHAO Lin, LIU Peng, CUI Wei. Intelligent prediction model for reduced-order dynamic modes of velocity field around a 1∶5 rectangular section[J]. ACTA AERODYNAMICA SINICA, 2025, 43(5): 124-133. DOI: 10.7638/kqdlxxb-2025.0031
    [3]ZHENG Hongdi, ZHAO Dazhi, LI Weibin, LIU Fan, XIAO Zhongyun, MA Shuai, MOU Yongfei. Decomposition and reconstruction of rotor flow field using dynamic mode decomposition method[J]. ACTA AERODYNAMICA SINICA, 2025, 43(3): 110-119. DOI: 10.7638/kqdlxxb-2024.0145
    [4]MA Hangyu, ZHANG Wenqiang, SU Weiyi, AN Hang. Modal decomposition and rapid prediction of flow and heat transfer in microtubes of precooler[J]. ACTA AERODYNAMICA SINICA, 2025, 43(2): 110-120. DOI: 10.7638/kqdlxxb-2024.0006
    [5]LIU Qiang, LUO Zhenbing, DENG Xiong, WANG Lin, ZHOU Yan. Modal analysis of dual syntehtic jets based on POD method[J]. ACTA AERODYNAMICA SINICA, 2020, 38(6): 1027-1033,1046. DOI: 10.7638/kqdlxxb-2018.0232
    [6]WANG Wenkang, PAN Chong, WANG Jinjun. Morphological analysis of coherent structures in wall-bounded turbulence based on variational mode decomposition[J]. ACTA AERODYNAMICA SINICA, 2020, 38(1): 100-106. DOI: 10.7638/kqdlxxb-2019.0120
    [7]HUI Qinglong, CAO Bochao. Efficient aeroelastic coupling computation based on proper orthogonal decomposition technique[J]. ACTA AERODYNAMICA SINICA, 2018, 36(5): 743-748. DOI: 10.7638/kqdlxxb-2017.0158
    [8]KOU Jiaqing, ZHANG Weiwei. Dynamic mode decomposition and its applications in fluid dynamics[J]. ACTA AERODYNAMICA SINICA, 2018, 36(2): 163-179. DOI: 10.7638/kqdlxxb-2017.0134
    [9]NIE Chunsheng, HUANG Jiandong, WANG Xun, LI Yu. Fast aeroheating prediction method for complex shape vehicles based on proper orthogonal decomposition[J]. ACTA AERODYNAMICA SINICA, 2017, 35(6): 760-765. DOI: 10.7638/kqdlxxb-2015.0157
    [10]ZHAO Song-yuan, HUANG Ming-ke. Application of simulated annealing method and reduced order models based on POD to airfoil inverse design problems[J]. ACTA AERODYNAMICA SINICA, 2007, 25(2): 236-240.
  • Cited by

    Periodical cited type(3)

    1. 万芸怡,黄锐,刘豪杰. 基于数据驱动的变体机翼跨声速颤振分析. 力学学报. 2025(02): 523-534 .
    2. 马航宇,张文强,苏纬仪,安航. 预冷器微细管束流动换热的模态分解与快速预测. 空气动力学学报. 2025(02): 110-120 . 本站查看
    3. 王燕,赵桂花,刘国良,李晔. 不同模态分解方法在风力机尾迹蜿蜒分析中的适用性研究. 农业工程学报. 2025(08): 211-221 .

    Other cited types(3)

Catalog

    Article views (227) PDF downloads (80) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return