当期目录

2023年 第41卷  第3期

2023年3期pdf合集
2023, 41(3): 1-110.
摘要:
研究综述
实用化壁面切应力测量技术的综述与展望
高南, 刘玄鹤
2023, 41(3): 1-24. doi: 10.7638/kqdlxxb-2021.0450
[摘要](246) HTML(56) PDF(22)
摘要:
本文围绕“实用化”这一主题对低速条件下常用的壁面切应力测量方法进行综述。实用化壁面切应力测量技术指的是能够方便、可靠、经济地测量运载工具局部摩阻的方法。具体包括天平法、近壁速度法、普莱斯顿管法、图像法、热膜法等。在实用化过程中,现有的测量方法展现出各自的优缺点,其中缺点包括:不便于安装、使用与维护;传感器对运载工具姿态、振动、加速度、温度变化等因素有过大的响应;传感器无法标定或标定结果不唯一;传感器结构强度弱、易损坏、易被污染或易氧化变性;传感器昂贵导致无法实现大规模部署,等等。这些缺点限制了实际应用。本文分析了多种方法的特点和局限性,介绍了应用案例,并评估了实用化潜力。本文重点介绍了新型双层热膜摩阻测量技术。该技术利用一种具有上、下两层金属膜的双层“三明治”热膜传感器测量壁面切应力,两层热膜在相同的温度下协同工作,这样下层热膜“封堵”了上层热膜产生的热量,使其仅传给流体,进而解决了困扰该技术发展的热损失问题。该方法可根据上层热膜的发热量直接计算壁面切应力的大小,这一“免标定”特性提高了测量的便利性及可靠性,令其具有良好的实用化前景。
研究论文
卷积神经网络在风洞天平静态校准中的应用
汪运鹏, 聂少军, 王粤, 姜宗林
2023, 41(3): 25-32. doi: 10.7638/kqdlxxb-2022.0096
摘要:
风洞天平是气动试验中用于测量作用在模型上的空气动力载荷(力与力矩)的大小、方向和作用点的装置,测量结果的精准度与天平的静态校准性能直接相关,天平的静态校准是通过校测设备建立天平测量信号与所受气动载荷的映射关系。由于多分量风洞天平的各个分量间存在相互干扰,并且通常二次干扰和组合干扰会出现非线性特性,采用线性拟合方法会产生一定的误差,使得风洞天平静态校准性能因受到数据处理方法(线性拟合)的局限而较难进一步提高。因此,为了进一步提升应变天平静态校准的性能,本文探索深度学习方法在风洞天平静态校准中的应用。利用中国科学院力学研究所风洞天平校准系统AiBCS,对六分量应变天平开展基于卷积神经网络的静态校准研究,采用深度学习训练模型代替传统风洞天平校准公式并获取更高性能指标。同时,对人工智能建模方法在天平静态校准中的适用条件、有效性及可靠性等方面进行了讨论和评估分析。数据结果显示:相较于传统的基于最小二乘多项式的拟合方法,卷积神经网络天平校准方法有效降低了天平各个分量间的载荷干扰,使校准结果的精准度得到了较大幅度的提升。
前置翼片式涡流发生器对燃烧室氢气燃料掺混特性的影响
吴龙, 王江峰, 李龙飞, 王丁
2023, 41(3): 33-43. doi: 10.7638/kqdlxxb-2021.0414
[摘要](162) HTML(45) PDF(15)
摘要:
超声速来流与燃料的充分掺混是超声速燃烧的关键技术,直接关系到吸气式高超声速推进系统的总体性能。本文通过在射流口前安装翼片式涡流发生器以促进燃料与空气的掺混。基于SST $k{\text{-}}\omega$湍流模型的RANS方法,对带有翼片式涡流发生器的超燃冲压发动机燃烧室模型内氢气横向喷流冷流流场进行了数值模拟,对比分析涡流发生器高度和长度不同的条件下燃烧室内的流场结构、涡流强度、氢气与空气掺混特性、燃烧室总压损失的规律。结果表明,翼片式涡流发生器能够提高涡流强度并大幅提高燃烧室内的掺混性能。随着涡流发生器高度和长度的增加,流场结构间的干扰增强,导致涡流强度和穿透深度增加,从而提升掺混效率。与不安装涡流发生器情况相比,涡流发生器能提升氢燃料的穿透深度超过170%,减少燃料掺混距离70%以上。更加复杂的流场结构同时会增大燃烧室的总压损失,并随着涡流发生器高度和长度的增加而增大。相较于掺混性能的提升,总压损失的增大幅度相对小很多,说明通过合理的参数选择,翼片式涡流发生器能够有效提升燃烧室的掺混性能。
研究专栏——机-舰耦合流场计算与分析
“机-舰耦合流场计算与分析”专栏简介
专栏组稿专家
2023, 41(3): 44-44.
摘要:
舰载直升机-舰船耦合流场数值计算研究综述
王逸斌, 马晨阳, 李通, 赵宁, 朱春玲
2023, 41(3): 45-66. doi: 10.7638/kqdlxxb-2022.0066
[摘要](119) HTML(54) PDF(30)
摘要:
舰载直升机舰面起降是海上舰载直升机最危险的作业之一,而舰船表面的复杂气流干扰是造成该问题的主要因素之一。本文从孤立舰船舰面流场主要特征分析出发,分别总结了航空母舰与非航空母舰类舰船的主要流动特征,以及舰载直升机-舰船耦合流场的主要流动特征。在此基础上,根据舰船表面流场计算采用的数值方法分类,从无黏流场到黏性流场计算、从定常数值计算到非定常数值计算,系统介绍了国内外的发展情况与主要研究工作。对舰载直升机-舰船耦合流场数值研究,根据采用的模型与耦合方法分类,从动量盘简化耦合模型到完整直升机模型、从单向耦合到双向耦合,介绍了国外的发展历程及主要相关工作。期望舰面流场以及机-舰耦合流场数值计算主要方法的探讨,能为后期机-舰耦合流场研究及机-舰适配性研究提供参考。
非直通甲板舰船空气流场的结构化建模
李海旭, 王金玲
2023, 41(3): 67-76. doi: 10.7638/kqdlxxb-2022.0102
摘要:
舰船空气流场是舰载机起降安全的重要影响因素,其结构化建模是研究舰载机起降安全边界和起降动力学过程的重要支撑。直通甲板舰船的空气流场结构化建模问题已于20世纪80年代解决,并纳入MIL-F-8785C军用规范,得到了广泛应用;而非直通甲板舰船的空气流场结构形式更为复杂,近年来科研人员通过数值模拟、风洞试验或实船测量等方法开展了研究,但其结构化建模问题仍有待解决。本文的研究目的是探索非直通甲板舰船空气流场的结构化建模方法。通过对其流场结构、形成机理进行分析,采用流场特性频域分析和数据拟合方法,解析了流场的稳态、周期和随机分量,成功构建了流场结构化模型,并通过仿真验证了模型的有效性,初步解决了非直通甲板舰船空气流场结构化建模问题,得出了较为实用的结构化模型,有望为舰载直升机起降安全研究提供重要支撑,大幅减少机-舰动态配合试验的工作量,使机-舰组合风限图的制定更加高效,并为机-舰动态配合实时仿真奠定基础。
斜风来流下纵摇运动对机-舰耦合流场的影响
李通, 刘戈, 宗昆, 赵宁, 王逸斌
2023, 41(3): 77-88. doi: 10.7638/kqdlxxb-2022.0174
摘要:
机-舰耦合流场是一个复杂紊乱的非定常流场,舰船的六自由度摇摆运动会进一步恶化飞行甲板上方的流场环境。为了探究舰船的摇摆运动对飞行甲板上方机-舰耦合流场的影响,基于简化护卫舰SFS2和旋翼的耦合模型,对两种斜风状态下、纵摇运动中的机-舰耦合流场进行了数值模拟,分析了纵摇运动对机-舰耦合流场结构和旋翼拉力的影响,对比了两种斜风状态下的流场差异。研究结果表明:随着舰船的纵摇运动,机库后方形成的不稳定混合涡结构和垂向气流会对旋翼气动力造成明显的影响,旋翼拉力出现了近似周期性的变化,与纵摇运动的周期一致,但各观测点处的速度分量均未出现周期性的变化;旋翼拉力在甲板上浮至水平位置附近时最大,在甲板下沉至水平位置附近时最小,对于左舷和右舷来流,拉力分别降低了约13%和6%,因此飞行员要认识到纵摇运动带来的拉力损失,确保直升机具有足够的操纵量,以便能及时调整总距来保证直升机在该状况下的起降安全性。
基于CVG的滑跃甲板尾流抑制
杨穆清, 张良, 马东立
2023, 41(3): 89-100. doi: 10.7638/kqdlxxb-2022.0111
摘要:
滑跃甲板对于提高舰载机起飞性能有重要意义,但是滑跃甲板会加剧舰尾流的湍流度,造成甲板上方和下滑线附近气流高度不稳定,影响舰载机起降安全。本文采用RANS/LES混合的DES方法,对平直甲板和滑跃甲板尾流进行数值模拟。结果表明,滑跃甲板后方存在巨大的分离区,对甲板上表面和着舰下滑线附近气流产生很大的影响,导致甲板附近x方向风速度降低,提高了对舰载机起飞和降落速度的要求。同时,速度波动幅值增大,对舰载机精准航迹控制有不利影响。为有效抑制滑跃甲板造成的舰尾流影响,提出了一种基于柱状涡流发生器(cylindrical vortex generators, CVG)的滑跃甲板尾流抑制方法,可有效降低滑跃甲板产生的影响。柱状涡流发生器可以有效减弱滑跃甲板导致的前甲板分离区,使得甲板流场更加稳定。相比无CVG时,有CVG时甲板x方向风速更高,风速波动功率谱密度(PSD)降低20~40 dB,恢复到与平直甲板相当的程度,可有效提高舰载机的起降安全性。
舰船甲板气流场对人员作业安全性影响分析
崔鲁宁, 贺少华
2023, 41(3): 101-110. doi: 10.7638/kqdlxxb-2022.0069
摘要:
舰船海上航行时,甲板上的直升机旋翼尾流和舰面流场相互掺混形成了复杂的流场,这不仅会影响直升机的安全起降,同时也会对甲板作业人员的安全性造成影响。本文首先开展了流场中的人体模型数值模拟,分析了不同风速下的人体受力情况,提出了影响人员作业安全的风速范围。之后开展了西北风级、戴高乐号、伊丽莎白女王号及美国号四艘舰船的气流场仿真,依据风速范围对各舰船甲板人员安全性进行了分析,总结出作业危险区域及形成原因。在此基础上,开展了直升机进舰耦合流场计算、直升机舰面降落耦合流场计算以及舰面多机降落耦合流场计算,并对直升机进舰降落过程中甲板高速气流场以及多机降落过程中的高速气流场进行了分析,总结了甲板面人员作业危险区域。